NTPsec

Kong

Report generated: Tue Apr 1 13:59:01 2025 UTC
Start Time: Tue Mar 25 13:59:00 2025 UTC
End Time: Tue Apr 1 13:59:00 2025 UTC
Report Period: 7.0 days

Daily stats   Weekly stats   Live GNSS Data   24 Hour Scatter Plots: ( )

Local Clock Time/Frequency Offsets

local offset plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Time Offset -6.387 -0.416 -0.080 0.000 0.077 0.336 5.021 0.157 0.751 0.342 -0.005 ms -2.678 143.1
Local Clock Frequency Offset 10.653 11.301 11.344 11.467 13.703 13.833 13.865 2.359 2.531 0.562 11.643 ppm 3.192 12.24

The time and frequency offsets between the ntpd calculated time and the local system clock. Showing frequency offset (red, in parts per million, scale on right) and the time offset (blue, in μs, scale on left). Quick changes in time offset will lead to larger frequency offsets.

These are fields 3 (time) and 4 (frequency) from the loopstats log file.



Local RMS Time Jitter

local jitter plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Time Jitter 0.012 0.018 0.023 0.042 0.086 2.102 4.312 0.063 2.085 0.309 0.088 ms 8.572 85.06

The RMS Jitter of the local clock offset. In other words, how fast the local clock offset is changing.

Lower is better. An ideal system would be a horizontal line at 0μs.

RMS jitter is field 5 in the loopstats log file.



Local RMS Frequency Jitter

local stability plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Frequency Jitter 3.814 10.111 12.532 22.902 88.816 244.965 389.341 76.284 234.854 38.664 32.474 ppb 5.335 37.14

The RMS Frequency Jitter (aka wander) of the local clock's frequency. In other words, how fast the local clock changes frequency.

Lower is better. An ideal clock would be a horizontal line at 0ppm.

RMS Frequency Jitter is field 6 in the loopstats log file.



Local Clock Time Offset Histogram

local offset histogram plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Offset -6.387 -0.416 -0.080 0.000 0.077 0.336 5.021 0.157 0.751 0.342 -0.005 ms -2.678 143.1

The clock offsets of the local clock as a histogram.

The Local Clock Offset is field 3 from the loopstats log file.



Local Temperatures

local temps plot

Local temperatures. These will be site-specific depending upon what temperature sensors you collect data from. Temperature changes affect the local clock crystal frequency and stability. The math of how temperature changes frequency is complex, and also depends on crystal aging. So there is no easy way to correct for it in software. This is the single most important component of frequency drift.

The Local Temperatures are from field 3 from the tempstats log file.



Local Frequency/Temp

local freq temps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 10.653 11.301 11.344 11.467 13.703 13.833 13.865 2.359 2.531 0.562 11.643 ppm 3.192 12.24
Temp /dev/sda 44.000 45.000 45.000 48.000 49.000 50.000 51.000 4.000 5.000 1.416 47.398 °C
Temp /dev/sdb 33.000 33.000 33.000 36.000 38.000 40.000 40.000 5.000 7.000 1.383 35.540 °C
Temp LM0 48.000 49.000 50.000 55.000 58.000 58.000 59.000 8.000 9.000 2.690 54.336 °C
Temp LM1 36.000 36.875 37.375 39.000 72.750 74.875 77.500 35.375 38.000 8.255 41.438 °C
Temp LM10 25.000 25.000 25.000 25.000 25.000 25.000 25.000 0.000 0.000 0.000 25.000 °C
Temp LM11 60.000 61.000 62.000 62.000 64.000 65.000 65.000 2.000 4.000 0.719 62.498 °C
Temp LM12 3.000 9.000 9.000 23.000 30.000 35.000 43.000 21.000 26.000 4.993 22.551 °C
Temp LM13 25.000 25.000 25.000 25.000 25.000 25.000 25.000 0.000 0.000 0.000 25.000 °C
Temp LM14 42.000 43.000 43.000 44.000 46.000 47.000 47.000 3.000 4.000 0.811 44.367 °C
Temp LM15 32.000 32.000 33.000 34.000 61.000 63.000 66.000 28.000 31.000 6.551 36.025 °C
Temp LM16 66.000 66.500 67.000 67.500 69.000 69.500 70.000 2.000 3.000 0.593 67.810 °C
Temp LM17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM2 36.000 37.000 37.500 39.500 71.500 74.250 78.250 34.000 37.250 7.963 41.771 °C
Temp LM20 36.000 36.875 37.375 39.000 72.750 74.750 77.500 35.375 37.875 8.252 41.436 °C
Temp LM21 66.000 66.750 67.125 67.875 69.250 69.750 70.000 2.125 3.000 0.584 67.953 °C
Temp LM22 33.000 33.000 33.000 36.000 38.000 40.000 40.000 5.000 7.000 1.352 35.622 °C
Temp LM23 63.850 65.850 67.850 69.850 70.850 71.850 73.850 3.000 6.000 1.168 69.878 °C
Temp LM3 44.000 45.000 45.000 48.000 49.000 50.000 51.000 4.000 5.000 1.407 47.398 °C
Temp LM4 47.850 48.850 49.850 50.850 52.850 54.850 56.850 3.000 6.000 0.922 50.836 °C
Temp LM5 47.850 48.850 49.850 50.850 52.850 54.850 56.850 3.000 6.000 0.915 50.840 °C
Temp LM6 55.850 56.850 56.850 58.850 62.850 68.850 74.850 6.000 12.000 2.089 59.319 °C
Temp LM7 47.850 48.850 49.850 50.850 52.850 54.850 56.850 3.000 6.000 0.910 50.846 °C
Temp LM8 42.000 43.000 43.000 44.000 46.000 47.000 47.000 3.000 4.000 0.807 44.365 °C
Temp LM9 32.000 33.000 33.000 34.500 50.000 52.000 52.500 17.000 19.000 4.003 35.637 °C

The frequency offsets and temperatures. Showing frequency offset (red, in parts per million, scale on right) and the temperatures.

These are field 4 (frequency) from the loopstats log file, and field 3 from the tempstats log file.



Local GPS

local gps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
nSats 3.000 6.000 7.000 9.000 12.000 14.000 15.000 5.000 8.000 1.780 9.341 nSat 0.1634 2.813
TDOP 0.730 0.910 1.040 1.610 3.620 5.060 87.840 2.580 4.150 1.812 1.890 23.57 802.5

Local GPS. The Time Dilution of Precision (TDOP) is plotted in blue. The number of visible satellites (nSat) is plotted in red.

TDOP is field 3, and nSats is field 4, from the gpsd log file. The gpsd log file is created by the ntploggps program.

TDOP is a dimensionless error factor. Smaller numbers are better. TDOP ranges from 1 (ideal), 2 to 5 (good), to greater than 20 (poor). Some GNSS receivers report TDOP less than one which is theoretically impossible.



Server Offsets

peer offsets plot

The offset of all refclocks and servers. This can be useful to see if offset changes are happening in a single clock or all clocks together.

Clock Offset is field 5 in the peerstats log file.



Server Offset 2001:470:e815::24 (pi4.rellim.com)

peer offset 2001:470:e815::24 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:470:e815::24 (pi4.rellim.com) -0.759 -0.168 -0.096 -0.005 0.074 0.186 36.356 0.170 0.355 0.643 0.006 ms 54.55 3072

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2001:470:e815::8 (spidey.rellim.com)

peer offset 2001:470:e815::8 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:470:e815::8 (spidey.rellim.com) -5.023 -4.295 -1.697 0.072 1.454 6.835 8.582 3.151 11.130 1.351 0.093 ms 2.045 17.01

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.1

peer offset 204.17.205.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.1 -5.429 -4.417 -1.761 0.047 1.508 6.456 8.517 3.269 10.873 1.347 0.077 ms 1.508 15.29

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.30

peer offset 204.17.205.30 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.30 -2,894.975 -857.766 -84.013 18.050 110.511 585.529 4,558.628 194.524 1,443.295 325.651 21.150 µs 4.387 85.55

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2405:fc00::1 (robusta.dcs1.biz)

peer offset 2405:fc00::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2405:fc00::1 (robusta.dcs1.biz) -0.364 1.521 1.915 4.184 5.823 12.068 15.087 3.908 10.547 1.641 4.090 ms 2.566 16.09

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com)

peer offset 2604:a880:1:20::17:5001 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com) -11.274 -4.125 -1.109 -0.544 0.137 0.655 5.245 1.247 4.780 0.817 -0.570 ms -5.245 58.19

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::1 (time.cloudflare.com)

peer offset 2606:4700:f1::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::1 (time.cloudflare.com) -1.120 -0.627 -0.377 0.479 1.028 1.355 1.677 1.405 1.982 0.383 0.454 ms -0.6338 4.522

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::123 (time.cloudflare.com)

peer offset 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::123 (time.cloudflare.com) -1.719 -1.265 -1.037 0.461 1.006 8.251 10.139 2.043 9.516 1.362 0.312 ms 3.925 25.08

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset SHM(0)

peer offset SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset SHM(0) -178.505 -145.349 -141.500 -128.384 -121.450 -115.991 -111.134 20.050 29.358 5.779 -129.149 ms -0.9082 5.074

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Jitters

peer jitters plot

The RMS Jitter of all refclocks and servers. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:470:e815::24 (pi4.rellim.com)

peer jitter 2001:470:e815::24 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:470:e815::24 (pi4.rellim.com) 0.000 0.006 0.012 0.101 0.169 0.197 23.361 0.157 0.190 0.635 0.116 ms 33.84 1168

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:470:e815::8 (spidey.rellim.com)

peer jitter 2001:470:e815::8 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:470:e815::8 (spidey.rellim.com) 0.000 4.365 14.288 118.838 213.878 278.562 510.220 199.590 274.197 66.060 112.819 µs 0.4977 3.909

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.1

peer jitter 204.17.205.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.1 0.000 5.707 16.234 119.114 219.643 293.784 749.638 203.409 288.077 67.242 116.932 µs 0.681 5.99

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.30

peer jitter 204.17.205.30 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.30 0.000 0.009 0.023 0.117 0.230 1.859 4.557 0.207 1.850 0.307 0.159 ms 7.862 75.34

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2405:fc00::1 (robusta.dcs1.biz)

peer jitter 2405:fc00::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2405:fc00::1 (robusta.dcs1.biz) 0.000 0.229 0.368 1.177 3.325 8.057 50.086 2.957 7.828 2.418 1.548 ms 13.29 234.9

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com)

peer jitter 2604:a880:1:20::17:5001 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.000 0.231 0.327 1.001 3.146 6.009 41.401 2.820 5.778 1.867 1.328 ms 13.47 263.2

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::1 (time.cloudflare.com)

peer jitter 2606:4700:f1::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::1 (time.cloudflare.com) 0.000 0.189 0.275 0.617 2.436 6.118 53.294 2.161 5.929 3.947 1.177 ms 11.48 144.2

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::123 (time.cloudflare.com)

peer jitter 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 0.089 0.121 0.214 0.551 2.911 5.263 7.827 2.697 5.142 1.000 0.884 ms 3.476 18.46

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter SHM(0)

peer jitter SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter SHM(0) 0.000 0.289 0.425 1.419 9.262 12.007 40.210 8.837 11.718 3.121 3.006 ms 1.817 9.526

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Summary


Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 10.653 11.301 11.344 11.467 13.703 13.833 13.865 2.359 2.531 0.562 11.643 ppm 3.192 12.24
Local Clock Time Offset -6.387 -0.416 -0.080 0.000 0.077 0.336 5.021 0.157 0.751 0.342 -0.005 ms -2.678 143.1
Local RMS Frequency Jitter 3.814 10.111 12.532 22.902 88.816 244.965 389.341 76.284 234.854 38.664 32.474 ppb 5.335 37.14
Local RMS Time Jitter 0.012 0.018 0.023 0.042 0.086 2.102 4.312 0.063 2.085 0.309 0.088 ms 8.572 85.06
Server Jitter 2001:470:e815::24 (pi4.rellim.com) 0.000 0.006 0.012 0.101 0.169 0.197 23.361 0.157 0.190 0.635 0.116 ms 33.84 1168
Server Jitter 2001:470:e815::8 (spidey.rellim.com) 0.000 4.365 14.288 118.838 213.878 278.562 510.220 199.590 274.197 66.060 112.819 µs 0.4977 3.909
Server Jitter 204.17.205.1 0.000 5.707 16.234 119.114 219.643 293.784 749.638 203.409 288.077 67.242 116.932 µs 0.681 5.99
Server Jitter 204.17.205.30 0.000 0.009 0.023 0.117 0.230 1.859 4.557 0.207 1.850 0.307 0.159 ms 7.862 75.34
Server Jitter 2405:fc00::1 (robusta.dcs1.biz) 0.000 0.229 0.368 1.177 3.325 8.057 50.086 2.957 7.828 2.418 1.548 ms 13.29 234.9
Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.000 0.231 0.327 1.001 3.146 6.009 41.401 2.820 5.778 1.867 1.328 ms 13.47 263.2
Server Jitter 2606:4700:f1::1 (time.cloudflare.com) 0.000 0.189 0.275 0.617 2.436 6.118 53.294 2.161 5.929 3.947 1.177 ms 11.48 144.2
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 0.089 0.121 0.214 0.551 2.911 5.263 7.827 2.697 5.142 1.000 0.884 ms 3.476 18.46
Server Jitter SHM(0) 0.000 0.289 0.425 1.419 9.262 12.007 40.210 8.837 11.718 3.121 3.006 ms 1.817 9.526
Server Offset 2001:470:e815::24 (pi4.rellim.com) -0.759 -0.168 -0.096 -0.005 0.074 0.186 36.356 0.170 0.355 0.643 0.006 ms 54.55 3072
Server Offset 2001:470:e815::8 (spidey.rellim.com) -5.023 -4.295 -1.697 0.072 1.454 6.835 8.582 3.151 11.130 1.351 0.093 ms 2.045 17.01
Server Offset 204.17.205.1 -5.429 -4.417 -1.761 0.047 1.508 6.456 8.517 3.269 10.873 1.347 0.077 ms 1.508 15.29
Server Offset 204.17.205.30 -2,894.975 -857.766 -84.013 18.050 110.511 585.529 4,558.628 194.524 1,443.295 325.651 21.150 µs 4.387 85.55
Server Offset 2405:fc00::1 (robusta.dcs1.biz) -0.364 1.521 1.915 4.184 5.823 12.068 15.087 3.908 10.547 1.641 4.090 ms 2.566 16.09
Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com) -11.274 -4.125 -1.109 -0.544 0.137 0.655 5.245 1.247 4.780 0.817 -0.570 ms -5.245 58.19
Server Offset 2606:4700:f1::1 (time.cloudflare.com) -1.120 -0.627 -0.377 0.479 1.028 1.355 1.677 1.405 1.982 0.383 0.454 ms -0.6338 4.522
Server Offset 2606:4700:f1::123 (time.cloudflare.com) -1.719 -1.265 -1.037 0.461 1.006 8.251 10.139 2.043 9.516 1.362 0.312 ms 3.925 25.08
Server Offset SHM(0) -178.505 -145.349 -141.500 -128.384 -121.450 -115.991 -111.134 20.050 29.358 5.779 -129.149 ms -0.9082 5.074
TDOP 0.730 0.910 1.040 1.610 3.620 5.060 87.840 2.580 4.150 1.812 1.890 23.57 802.5
Temp /dev/sda 44.000 45.000 45.000 48.000 49.000 50.000 51.000 4.000 5.000 1.416 47.398 °C
Temp /dev/sdb 33.000 33.000 33.000 36.000 38.000 40.000 40.000 5.000 7.000 1.383 35.540 °C
Temp LM0 48.000 49.000 50.000 55.000 58.000 58.000 59.000 8.000 9.000 2.690 54.336 °C
Temp LM1 36.000 36.875 37.375 39.000 72.750 74.875 77.500 35.375 38.000 8.255 41.438 °C
Temp LM10 25.000 25.000 25.000 25.000 25.000 25.000 25.000 0.000 0.000 0.000 25.000 °C
Temp LM11 60.000 61.000 62.000 62.000 64.000 65.000 65.000 2.000 4.000 0.719 62.498 °C
Temp LM12 3.000 9.000 9.000 23.000 30.000 35.000 43.000 21.000 26.000 4.993 22.551 °C
Temp LM13 25.000 25.000 25.000 25.000 25.000 25.000 25.000 0.000 0.000 0.000 25.000 °C
Temp LM14 42.000 43.000 43.000 44.000 46.000 47.000 47.000 3.000 4.000 0.811 44.367 °C
Temp LM15 32.000 32.000 33.000 34.000 61.000 63.000 66.000 28.000 31.000 6.551 36.025 °C
Temp LM16 66.000 66.500 67.000 67.500 69.000 69.500 70.000 2.000 3.000 0.593 67.810 °C
Temp LM17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM2 36.000 37.000 37.500 39.500 71.500 74.250 78.250 34.000 37.250 7.963 41.771 °C
Temp LM20 36.000 36.875 37.375 39.000 72.750 74.750 77.500 35.375 37.875 8.252 41.436 °C
Temp LM21 66.000 66.750 67.125 67.875 69.250 69.750 70.000 2.125 3.000 0.584 67.953 °C
Temp LM22 33.000 33.000 33.000 36.000 38.000 40.000 40.000 5.000 7.000 1.352 35.622 °C
Temp LM23 63.850 65.850 67.850 69.850 70.850 71.850 73.850 3.000 6.000 1.168 69.878 °C
Temp LM3 44.000 45.000 45.000 48.000 49.000 50.000 51.000 4.000 5.000 1.407 47.398 °C
Temp LM4 47.850 48.850 49.850 50.850 52.850 54.850 56.850 3.000 6.000 0.922 50.836 °C
Temp LM5 47.850 48.850 49.850 50.850 52.850 54.850 56.850 3.000 6.000 0.915 50.840 °C
Temp LM6 55.850 56.850 56.850 58.850 62.850 68.850 74.850 6.000 12.000 2.089 59.319 °C
Temp LM7 47.850 48.850 49.850 50.850 52.850 54.850 56.850 3.000 6.000 0.910 50.846 °C
Temp LM8 42.000 43.000 43.000 44.000 46.000 47.000 47.000 3.000 4.000 0.807 44.365 °C
Temp LM9 32.000 33.000 33.000 34.500 50.000 52.000 52.500 17.000 19.000 4.003 35.637 °C
nSats 3.000 6.000 7.000 9.000 12.000 14.000 15.000 5.000 8.000 1.780 9.341 nSat 0.1634 2.813
Summary as CSV file


This server:

Motherboard:
OS: Gentoo unstable
GPS:
GPS/PPS server: gpsd
NTP server: NTPsec
../ntp.conf

Notes:

Feb 21 03:28:57 UTC 2019: New install

Glossary:

frequency offset:
The difference between the ntpd calculated frequency and the local system clock frequency (usually in parts per million, ppm)
jitter, dispersion:
The short term change in a value. NTP measures Local Time Jitter, Refclock Jitter, and Server Jitter in seconds. Local Frequency Jitter is in ppm or ppb.
ms, millisecond:
One thousandth of a second = 0.001 seconds, 1e-3 seconds
mu, mean:
The arithmetic mean: the sum of all the values divided by the number of values. The formula for mu is: "mu = (∑xi) / N". Where xi denotes the data points and N is the number of data points.
ns, nanosecond:
One billionth of a second, also one thousandth of a microsecond, 0.000000001 seconds and 1e-9 seconds.
percentile:
The value below which a given percentage of values fall.
ppb, parts per billion:
Ratio between two values. These following are all the same: 1 ppb, one in one billion, 1/1,000,000,000, 0.000,000,001, 1e-9 and 0.000,000,1%
ppm, parts per million:
Ratio between two values. These following are all the same: 1 ppm, one in one million, 1/1,000,000, 0.000,001, and 0.000,1%
‰, parts per thousand:
Ratio between two values. These following are all the same: 1 ‰. one in one thousand, 1/1,000, 0.001, and 0.1%
refclock:
Reference clock, a local GPS module or other local source of time.
remote clock:
Any clock reached over the network, LAN or WAN. Also called a peer or server.
time offset:
The difference between the ntpd calculated time and the local system clock's time. Also called phase offset.
σ, sigma:
Sigma denotes the standard deviation (SD) and is centered on the arithmetic mean of the data set. The SD is simply the square root of the variance of the data set. Two sigma is simply twice the standard deviation. Three sigma is three times sigma. Smaller is better.
The formula for sigma is: "σ = √[ ∑(xi-mu)^2 / N ]". Where xi denotes the data points and N is the number of data points.
Skewness, Skew:
The skewness of a random variable X is the third standardized moment and is a dimension-less ratio. ntpviz uses the FIsher-Pearson moment of skewness. There are other different ways to calculate Skewness Wikipedia describes Skewness best: "The qualitative interpretation of the skew is complicated and unintuitive."
A normal distribution has a skewness of zero.
Kurtosis, Kurt:
The kurtosis of a random variable X is the fourth standardized moment and is a dimension-less ratio. ntpviz uses standard Kurtosis. There are other different ways to calculate Kurtosis.
A normal distribution has a Kurtosis of three. NIST describes a kurtosis over three as "heavy tailed" and one under three as "light tailed".
upstream clock:
Any server or reference clock used as a source of time.
µs, us, microsecond:
One millionth of a second, also one thousandth of a millisecond, 0.000,001 seconds, and 1e-6 seconds.



This page autogenerated by ntpviz, part of the NTPsec project
html 5    Valid CSS!