NTPsec

Kong

Report generated: Fri Jul 18 13:59:01 2025 UTC
Start Time: Fri Jul 11 13:59:00 2025 UTC
End Time: Fri Jul 18 13:59:00 2025 UTC
Report Period: 7.0 days

Daily stats   Weekly stats   Live GNSS Data   24 Hour Scatter Plots: ( )

Local Clock Time/Frequency Offsets

local offset plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Time Offset -248.766 -100.959 -54.148 -1.071 47.267 116.023 291.074 101.415 216.982 35.698 -1.675 µs 0.1225 12.93
Local Clock Frequency Offset 12.526 12.581 12.651 13.163 14.148 14.220 14.236 1.498 1.639 0.419 13.225 ppm 1.012 3.473

The time and frequency offsets between the ntpd calculated time and the local system clock. Showing frequency offset (red, in parts per million, scale on right) and the time offset (blue, in μs, scale on left). Quick changes in time offset will lead to larger frequency offsets.

These are fields 3 (time) and 4 (frequency) from the loopstats log file.



Local RMS Time Jitter

local jitter plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Time Jitter 5.923 9.956 12.528 24.492 43.769 55.096 78.194 31.241 45.140 10.010 26.062 µs 0.8208 3.905

The RMS Jitter of the local clock offset. In other words, how fast the local clock offset is changing.

Lower is better. An ideal system would be a horizontal line at 0μs.

RMS jitter is field 5 in the loopstats log file.



Local RMS Frequency Jitter

local stability plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Frequency Jitter 3.010 4.815 6.054 12.434 41.864 79.232 124.096 35.810 74.417 13.234 16.164 ppb 3.395 17.55

The RMS Frequency Jitter (aka wander) of the local clock's frequency. In other words, how fast the local clock changes frequency.

Lower is better. An ideal clock would be a horizontal line at 0ppm.

RMS Frequency Jitter is field 6 in the loopstats log file.



Local Clock Time Offset Histogram

local offset histogram plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Offset -248.766 -100.959 -54.148 -1.071 47.267 116.023 291.074 101.415 216.982 35.698 -1.675 µs 0.1225 12.93

The clock offsets of the local clock as a histogram.

The Local Clock Offset is field 3 from the loopstats log file.



Local Temperatures

local temps plot

Local temperatures. These will be site-specific depending upon what temperature sensors you collect data from. Temperature changes affect the local clock crystal frequency and stability. The math of how temperature changes frequency is complex, and also depends on crystal aging. So there is no easy way to correct for it in software. This is the single most important component of frequency drift.

The Local Temperatures are from field 3 from the tempstats log file.



Local Frequency/Temp

local freq temps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 12.526 12.581 12.651 13.163 14.148 14.220 14.236 1.498 1.639 0.419 13.225 ppm 1.012 3.473
Temp /dev/nvme0n1 64.000 66.000 70.000 73.000 74.000 75.000 76.000 4.000 9.000 1.620 72.475 °C
Temp /dev/nvme1n1 50.000 51.000 52.000 53.000 55.000 58.000 60.000 3.000 7.000 1.191 53.556 °C
Temp /dev/sda 50.000 50.000 51.000 52.000 54.000 55.000 56.000 3.000 5.000 0.980 52.246 °C
Temp /dev/sdb 38.000 39.000 39.000 41.000 43.000 44.000 45.000 4.000 5.000 1.183 40.809 °C
Temp LM0 49.000 49.000 50.000 54.000 58.000 58.000 59.000 8.000 9.000 2.654 54.159 °C
Temp LM1 41.750 42.000 42.625 45.500 69.250 71.125 73.500 26.625 29.125 8.646 49.180 °C
Temp LM10 25.000 25.000 25.000 25.000 25.000 25.000 26.000 0.000 0.000 0.031 25.001 °C
Temp LM11 63.000 63.000 63.000 65.000 65.000 66.000 66.000 2.000 3.000 0.706 64.464 °C
Temp LM12 3.000 5.000 6.000 23.000 28.000 31.000 38.000 22.000 26.000 6.715 20.582 °C
Temp LM13 25.000 25.000 25.000 25.000 25.000 25.000 26.000 0.000 0.000 0.094 25.009 °C
Temp LM14 46.000 46.000 47.000 48.000 49.000 50.000 50.000 2.000 4.000 0.796 48.326 °C
Temp LM15 37.000 37.000 38.000 40.000 58.000 60.000 62.000 20.000 23.000 6.407 42.469 °C
Temp LM16 67.500 68.000 68.000 69.500 70.000 70.000 70.500 2.000 2.000 0.592 69.213 °C
Temp LM17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM2 41.500 42.000 42.750 45.500 68.500 71.250 75.000 25.750 29.250 8.288 48.903 °C
Temp LM20 41.000 42.000 42.625 45.500 69.250 71.125 73.500 26.625 29.125 8.641 49.165 °C
Temp LM21 67.750 68.000 68.250 69.500 70.000 70.250 70.500 1.750 2.250 0.578 69.357 °C
Temp LM22 39.000 39.000 39.000 41.000 43.000 44.000 44.000 4.000 5.000 1.108 40.902 °C
Temp LM23 63.850 65.850 68.850 72.850 73.850 74.850 75.850 5.000 9.000 1.628 72.336 °C
Temp LM3 50.000 50.000 51.000 52.000 54.000 55.000 56.000 3.000 5.000 0.974 52.251 °C
Temp LM4 49.850 50.850 51.850 52.850 54.850 57.850 59.850 3.000 7.000 1.189 53.386 °C
Temp LM5 49.850 50.850 51.850 52.850 54.850 57.850 59.850 3.000 7.000 1.194 53.407 °C
Temp LM6 57.850 58.850 59.850 60.850 64.850 72.850 77.850 5.000 14.000 2.259 61.566 °C
Temp LM7 49.850 50.850 51.850 52.850 54.850 57.850 59.850 3.000 7.000 1.187 53.416 °C
Temp LM8 46.000 46.000 47.000 48.000 49.000 50.000 50.000 2.000 4.000 0.792 48.329 °C
Temp LM9 37.500 37.500 38.000 40.000 48.500 49.500 50.500 10.500 12.000 3.181 41.212 °C

The frequency offsets and temperatures. Showing frequency offset (red, in parts per million, scale on right) and the temperatures.

These are field 4 (frequency) from the loopstats log file, and field 3 from the tempstats log file.



Local GPS

local gps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
nSats 5.000 5.000 5.000 5.000 5.000 5.000 16.000 0.000 0.000 0.046 5.000 nSat 210.2 4.531e+04
TDOP 0.540 0.690 0.780 1.070 1.760 2.440 6.790 0.980 1.750 0.345 1.156 2.058 11.49

Local GPS. The Time Dilution of Precision (TDOP) is plotted in blue. The number of visible satellites (nSat) is plotted in red.

TDOP is field 3, and nSats is field 4, from the gpsd log file. The gpsd log file is created by the ntploggps program.

TDOP is a dimensionless error factor. Smaller numbers are better. TDOP ranges from 1 (ideal), 2 to 5 (good), to greater than 20 (poor). Some GNSS receivers report TDOP less than one which is theoretically impossible.



Server Offsets

peer offsets plot

The offset of all refclocks and servers. This can be useful to see if offset changes are happening in a single clock or all clocks together.

Clock Offset is field 5 in the peerstats log file.



Server Offset 2001:470:e815::24 (pi4.rellim.com)

peer offset 2001:470:e815::24 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:470:e815::24 (pi4.rellim.com) -343.201 -134.537 -82.277 7.370 63.518 133.203 316.198 145.795 267.740 47.809 3.259 µs -0.1342 11.18

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2001:470:e815::8 (spidey.rellim.com)

peer offset 2001:470:e815::8 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:470:e815::8 (spidey.rellim.com) -250.631 -79.838 -33.359 21.346 85.575 149.954 292.006 118.934 229.792 39.490 22.936 µs 0.2926 8.713

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.1

peer offset 204.17.205.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.1 -1.490 -0.532 -0.167 0.393 0.861 1.061 1.155 1.029 1.593 0.348 0.372 ms -0.7075 5

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.30

peer offset 204.17.205.30 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.30 -228.607 -123.015 -75.949 -16.872 40.354 89.137 250.022 116.303 212.152 36.909 -17.009 µs 0.05558 9.568

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2405:fc00::1 (robusta.dcs1.biz)

peer offset 2405:fc00::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2405:fc00::1 (robusta.dcs1.biz) -152.180 -53.350 1.375 2.112 2.695 2.884 19.303 1.320 56.235 12.704 -0.108 ms -7.282 67.34

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com)

peer offset 2604:a880:1:20::17:5001 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com) -15.471 0.402 0.979 1.327 1.701 1.990 12.170 0.722 1.589 1.334 1.242 ms -8.535 108.6

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::1 (time.cloudflare.com)

peer offset 2606:4700:f1::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::1 (time.cloudflare.com) 1.906 2.148 2.286 2.551 2.809 2.954 3.269 0.524 0.806 0.164 2.551 ms 0.0496 3.71

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::123 (time.cloudflare.com)

peer offset 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::123 (time.cloudflare.com) 0.967 2.104 2.305 2.552 2.862 3.129 17.504 0.557 1.025 0.906 2.621 ms 13.36 197.4

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset SHM(0)

peer offset SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset SHM(0) -174.689 -141.872 -139.398 -133.720 -129.227 -127.799 -125.216 10.171 14.073 3.168 -133.901 ms -0.6977 5.687

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Jitters

peer jitters plot

The RMS Jitter of all refclocks and servers. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:470:e815::24 (pi4.rellim.com)

peer jitter 2001:470:e815::24 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:470:e815::24 (pi4.rellim.com) 1.823 4.126 7.649 53.253 126.055 161.426 308.391 118.406 157.300 37.078 59.940 µs 0.6786 3.428

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:470:e815::8 (spidey.rellim.com)

peer jitter 2001:470:e815::8 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:470:e815::8 (spidey.rellim.com) 1.857 4.200 8.493 36.950 117.941 147.474 217.386 109.448 143.274 31.988 46.117 µs 1.421 4.972

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.1

peer jitter 204.17.205.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.1 2.325 5.354 9.833 46.042 144.560 182.055 267.687 134.727 176.701 43.595 61.080 µs 1.055 3.48

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.30

peer jitter 204.17.205.30 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.30 2.987 4.959 9.783 53.385 138.237 165.440 226.123 128.454 160.481 39.455 63.042 µs 0.7668 3.14

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2405:fc00::1 (robusta.dcs1.biz)

peer jitter 2405:fc00::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2405:fc00::1 (robusta.dcs1.biz) 0.048 0.152 0.230 0.601 6.534 29.506 169.558 6.304 29.354 7.769 1.990 ms 12.01 190.6

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com)

peer jitter 2604:a880:1:20::17:5001 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.091 0.161 0.225 0.585 3.063 9.667 93.671 2.838 9.506 2.739 1.136 ms 21.27 674.6

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::1 (time.cloudflare.com)

peer jitter 2606:4700:f1::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::1 (time.cloudflare.com) 0.079 0.145 0.195 0.462 1.541 3.550 11.709 1.346 3.405 0.767 0.636 ms 7.887 94.53

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::123 (time.cloudflare.com)

peer jitter 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 0.083 0.133 0.208 0.473 1.756 10.938 74.722 1.548 10.805 3.134 0.947 ms 17.06 379.6

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter SHM(0)

peer jitter SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter SHM(0) 0.097 0.299 0.433 1.067 2.735 5.186 34.255 2.301 4.887 1.116 1.302 ms 7.76 123.9

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Summary


Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 12.526 12.581 12.651 13.163 14.148 14.220 14.236 1.498 1.639 0.419 13.225 ppm 1.012 3.473
Local Clock Time Offset -248.766 -100.959 -54.148 -1.071 47.267 116.023 291.074 101.415 216.982 35.698 -1.675 µs 0.1225 12.93
Local RMS Frequency Jitter 3.010 4.815 6.054 12.434 41.864 79.232 124.096 35.810 74.417 13.234 16.164 ppb 3.395 17.55
Local RMS Time Jitter 5.923 9.956 12.528 24.492 43.769 55.096 78.194 31.241 45.140 10.010 26.062 µs 0.8208 3.905
Server Jitter 2001:470:e815::24 (pi4.rellim.com) 1.823 4.126 7.649 53.253 126.055 161.426 308.391 118.406 157.300 37.078 59.940 µs 0.6786 3.428
Server Jitter 2001:470:e815::8 (spidey.rellim.com) 1.857 4.200 8.493 36.950 117.941 147.474 217.386 109.448 143.274 31.988 46.117 µs 1.421 4.972
Server Jitter 204.17.205.1 2.325 5.354 9.833 46.042 144.560 182.055 267.687 134.727 176.701 43.595 61.080 µs 1.055 3.48
Server Jitter 204.17.205.30 2.987 4.959 9.783 53.385 138.237 165.440 226.123 128.454 160.481 39.455 63.042 µs 0.7668 3.14
Server Jitter 2405:fc00::1 (robusta.dcs1.biz) 0.048 0.152 0.230 0.601 6.534 29.506 169.558 6.304 29.354 7.769 1.990 ms 12.01 190.6
Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.091 0.161 0.225 0.585 3.063 9.667 93.671 2.838 9.506 2.739 1.136 ms 21.27 674.6
Server Jitter 2606:4700:f1::1 (time.cloudflare.com) 0.079 0.145 0.195 0.462 1.541 3.550 11.709 1.346 3.405 0.767 0.636 ms 7.887 94.53
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 0.083 0.133 0.208 0.473 1.756 10.938 74.722 1.548 10.805 3.134 0.947 ms 17.06 379.6
Server Jitter SHM(0) 0.097 0.299 0.433 1.067 2.735 5.186 34.255 2.301 4.887 1.116 1.302 ms 7.76 123.9
Server Offset 2001:470:e815::24 (pi4.rellim.com) -343.201 -134.537 -82.277 7.370 63.518 133.203 316.198 145.795 267.740 47.809 3.259 µs -0.1342 11.18
Server Offset 2001:470:e815::8 (spidey.rellim.com) -250.631 -79.838 -33.359 21.346 85.575 149.954 292.006 118.934 229.792 39.490 22.936 µs 0.2926 8.713
Server Offset 204.17.205.1 -1.490 -0.532 -0.167 0.393 0.861 1.061 1.155 1.029 1.593 0.348 0.372 ms -0.7075 5
Server Offset 204.17.205.30 -228.607 -123.015 -75.949 -16.872 40.354 89.137 250.022 116.303 212.152 36.909 -17.009 µs 0.05558 9.568
Server Offset 2405:fc00::1 (robusta.dcs1.biz) -152.180 -53.350 1.375 2.112 2.695 2.884 19.303 1.320 56.235 12.704 -0.108 ms -7.282 67.34
Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com) -15.471 0.402 0.979 1.327 1.701 1.990 12.170 0.722 1.589 1.334 1.242 ms -8.535 108.6
Server Offset 2606:4700:f1::1 (time.cloudflare.com) 1.906 2.148 2.286 2.551 2.809 2.954 3.269 0.524 0.806 0.164 2.551 ms 0.0496 3.71
Server Offset 2606:4700:f1::123 (time.cloudflare.com) 0.967 2.104 2.305 2.552 2.862 3.129 17.504 0.557 1.025 0.906 2.621 ms 13.36 197.4
Server Offset SHM(0) -174.689 -141.872 -139.398 -133.720 -129.227 -127.799 -125.216 10.171 14.073 3.168 -133.901 ms -0.6977 5.687
TDOP 0.540 0.690 0.780 1.070 1.760 2.440 6.790 0.980 1.750 0.345 1.156 2.058 11.49
Temp /dev/nvme0n1 64.000 66.000 70.000 73.000 74.000 75.000 76.000 4.000 9.000 1.620 72.475 °C
Temp /dev/nvme1n1 50.000 51.000 52.000 53.000 55.000 58.000 60.000 3.000 7.000 1.191 53.556 °C
Temp /dev/sda 50.000 50.000 51.000 52.000 54.000 55.000 56.000 3.000 5.000 0.980 52.246 °C
Temp /dev/sdb 38.000 39.000 39.000 41.000 43.000 44.000 45.000 4.000 5.000 1.183 40.809 °C
Temp LM0 49.000 49.000 50.000 54.000 58.000 58.000 59.000 8.000 9.000 2.654 54.159 °C
Temp LM1 41.750 42.000 42.625 45.500 69.250 71.125 73.500 26.625 29.125 8.646 49.180 °C
Temp LM10 25.000 25.000 25.000 25.000 25.000 25.000 26.000 0.000 0.000 0.031 25.001 °C
Temp LM11 63.000 63.000 63.000 65.000 65.000 66.000 66.000 2.000 3.000 0.706 64.464 °C
Temp LM12 3.000 5.000 6.000 23.000 28.000 31.000 38.000 22.000 26.000 6.715 20.582 °C
Temp LM13 25.000 25.000 25.000 25.000 25.000 25.000 26.000 0.000 0.000 0.094 25.009 °C
Temp LM14 46.000 46.000 47.000 48.000 49.000 50.000 50.000 2.000 4.000 0.796 48.326 °C
Temp LM15 37.000 37.000 38.000 40.000 58.000 60.000 62.000 20.000 23.000 6.407 42.469 °C
Temp LM16 67.500 68.000 68.000 69.500 70.000 70.000 70.500 2.000 2.000 0.592 69.213 °C
Temp LM17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM2 41.500 42.000 42.750 45.500 68.500 71.250 75.000 25.750 29.250 8.288 48.903 °C
Temp LM20 41.000 42.000 42.625 45.500 69.250 71.125 73.500 26.625 29.125 8.641 49.165 °C
Temp LM21 67.750 68.000 68.250 69.500 70.000 70.250 70.500 1.750 2.250 0.578 69.357 °C
Temp LM22 39.000 39.000 39.000 41.000 43.000 44.000 44.000 4.000 5.000 1.108 40.902 °C
Temp LM23 63.850 65.850 68.850 72.850 73.850 74.850 75.850 5.000 9.000 1.628 72.336 °C
Temp LM3 50.000 50.000 51.000 52.000 54.000 55.000 56.000 3.000 5.000 0.974 52.251 °C
Temp LM4 49.850 50.850 51.850 52.850 54.850 57.850 59.850 3.000 7.000 1.189 53.386 °C
Temp LM5 49.850 50.850 51.850 52.850 54.850 57.850 59.850 3.000 7.000 1.194 53.407 °C
Temp LM6 57.850 58.850 59.850 60.850 64.850 72.850 77.850 5.000 14.000 2.259 61.566 °C
Temp LM7 49.850 50.850 51.850 52.850 54.850 57.850 59.850 3.000 7.000 1.187 53.416 °C
Temp LM8 46.000 46.000 47.000 48.000 49.000 50.000 50.000 2.000 4.000 0.792 48.329 °C
Temp LM9 37.500 37.500 38.000 40.000 48.500 49.500 50.500 10.500 12.000 3.181 41.212 °C
nSats 5.000 5.000 5.000 5.000 5.000 5.000 16.000 0.000 0.000 0.046 5.000 nSat 210.2 4.531e+04
Summary as CSV file


This server:

Motherboard:
OS: Gentoo unstable
GPS:
GPS/PPS server: gpsd
NTP server: NTPsec
../ntp.conf

Notes:

Feb 21 03:28:57 UTC 2019: New install

Glossary:

frequency offset:
The difference between the ntpd calculated frequency and the local system clock frequency (usually in parts per million, ppm)
jitter, dispersion:
The short term change in a value. NTP measures Local Time Jitter, Refclock Jitter, and Server Jitter in seconds. Local Frequency Jitter is in ppm or ppb.
ms, millisecond:
One thousandth of a second = 0.001 seconds, 1e-3 seconds
mu, mean:
The arithmetic mean: the sum of all the values divided by the number of values. The formula for mu is: "mu = (∑xi) / N". Where xi denotes the data points and N is the number of data points.
ns, nanosecond:
One billionth of a second, also one thousandth of a microsecond, 0.000000001 seconds and 1e-9 seconds.
percentile:
The value below which a given percentage of values fall.
ppb, parts per billion:
Ratio between two values. These following are all the same: 1 ppb, one in one billion, 1/1,000,000,000, 0.000,000,001, 1e-9 and 0.000,000,1%
ppm, parts per million:
Ratio between two values. These following are all the same: 1 ppm, one in one million, 1/1,000,000, 0.000,001, and 0.000,1%
‰, parts per thousand:
Ratio between two values. These following are all the same: 1 ‰. one in one thousand, 1/1,000, 0.001, and 0.1%
refclock:
Reference clock, a local GPS module or other local source of time.
remote clock:
Any clock reached over the network, LAN or WAN. Also called a peer or server.
time offset:
The difference between the ntpd calculated time and the local system clock's time. Also called phase offset.
σ, sigma:
Sigma denotes the standard deviation (SD) and is centered on the arithmetic mean of the data set. The SD is simply the square root of the variance of the data set. Two sigma is simply twice the standard deviation. Three sigma is three times sigma. Smaller is better.
The formula for sigma is: "σ = √[ ∑(xi-mu)^2 / N ]". Where xi denotes the data points and N is the number of data points.
Skewness, Skew:
The skewness of a random variable X is the third standardized moment and is a dimension-less ratio. ntpviz uses the FIsher-Pearson moment of skewness. There are other different ways to calculate Skewness Wikipedia describes Skewness best: "The qualitative interpretation of the skew is complicated and unintuitive."
A normal distribution has a skewness of zero.
Kurtosis, Kurt:
The kurtosis of a random variable X is the fourth standardized moment and is a dimension-less ratio. ntpviz uses standard Kurtosis. There are other different ways to calculate Kurtosis.
A normal distribution has a Kurtosis of three. NIST describes a kurtosis over three as "heavy tailed" and one under three as "light tailed".
upstream clock:
Any server or reference clock used as a source of time.
µs, us, microsecond:
One millionth of a second, also one thousandth of a millisecond, 0.000,001 seconds, and 1e-6 seconds.



This page autogenerated by ntpviz, part of the NTPsec project
html 5    Valid CSS!