NTPsec

Kong

Report generated: Fri Jun 20 13:59:01 2025 UTC
Start Time: Fri Jun 13 13:59:00 2025 UTC
End Time: Fri Jun 20 13:59:00 2025 UTC
Report Period: 7.0 days

Daily stats   Weekly stats   Live GNSS Data   24 Hour Scatter Plots: ( )

Local Clock Time/Frequency Offsets

local offset plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Time Offset -325.389 -122.638 -61.436 -1.070 54.583 177.423 451.822 116.019 300.061 46.539 -0.187 µs 1.475 20.23
Local Clock Frequency Offset 11.970 12.032 12.104 12.443 13.611 13.683 13.742 1.507 1.650 0.447 12.569 ppm 1.289 3.652

The time and frequency offsets between the ntpd calculated time and the local system clock. Showing frequency offset (red, in parts per million, scale on right) and the time offset (blue, in μs, scale on left). Quick changes in time offset will lead to larger frequency offsets.

These are fields 3 (time) and 4 (frequency) from the loopstats log file.



Local RMS Time Jitter

local jitter plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Time Jitter 0.001 10.050 13.327 26.330 55.306 83.701 184.243 41.979 73.651 14.599 29.413 µs 2.486 15.38

The RMS Jitter of the local clock offset. In other words, how fast the local clock offset is changing.

Lower is better. An ideal system would be a horizontal line at 0μs.

RMS jitter is field 5 in the loopstats log file.



Local RMS Frequency Jitter

local stability plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Frequency Jitter 0.000 5.016 6.926 14.071 47.222 82.576 153.200 40.296 77.560 14.821 18.193 ppb 3.459 19.05

The RMS Frequency Jitter (aka wander) of the local clock's frequency. In other words, how fast the local clock changes frequency.

Lower is better. An ideal clock would be a horizontal line at 0ppm.

RMS Frequency Jitter is field 6 in the loopstats log file.



Local Clock Time Offset Histogram

local offset histogram plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Offset -325.389 -122.638 -61.436 -1.070 54.583 177.423 451.822 116.019 300.061 46.539 -0.187 µs 1.475 20.23

The clock offsets of the local clock as a histogram.

The Local Clock Offset is field 3 from the loopstats log file.



Local Temperatures

local temps plot

Local temperatures. These will be site-specific depending upon what temperature sensors you collect data from. Temperature changes affect the local clock crystal frequency and stability. The math of how temperature changes frequency is complex, and also depends on crystal aging. So there is no easy way to correct for it in software. This is the single most important component of frequency drift.

The Local Temperatures are from field 3 from the tempstats log file.



Local Frequency/Temp

local freq temps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 11.970 12.032 12.104 12.443 13.611 13.683 13.742 1.507 1.650 0.447 12.569 ppm 1.289 3.652
Temp /dev/nvme0n1 50.000 51.000 52.000 71.000 73.000 73.000 75.000 21.000 22.000 8.140 67.151 °C
Temp /dev/nvme1n1 51.000 51.000 51.000 53.000 72.000 73.000 73.000 21.000 22.000 7.802 56.736 °C
Temp /dev/sda 48.000 48.000 48.000 51.000 52.000 53.000 53.000 4.000 5.000 1.119 50.286 °C
Temp /dev/sdb 36.000 37.000 37.000 39.000 41.000 42.000 43.000 4.000 5.000 1.077 38.598 °C
Temp LM0 48.000 49.000 50.000 54.000 58.000 58.000 59.000 8.000 9.000 2.702 54.172 °C
Temp LM1 40.000 40.500 41.000 43.125 68.250 70.000 86.875 27.250 29.500 8.840 46.992 °C
Temp LM10 25.000 25.000 25.000 25.000 25.000 25.000 26.000 0.000 0.000 0.055 25.003 °C
Temp LM11 62.000 63.000 63.000 64.000 65.000 65.000 66.000 2.000 2.000 0.605 63.842 °C
Temp LM12 3.000 5.000 6.000 22.000 27.000 32.000 38.000 21.000 27.000 6.361 19.831 °C
Temp LM13 25.000 25.000 25.000 25.000 25.000 25.000 26.000 0.000 0.000 0.086 25.007 °C
Temp LM14 45.000 45.000 46.000 47.000 48.000 48.000 48.000 2.000 3.000 0.709 46.595 °C
Temp LM15 35.000 36.000 36.000 38.000 57.000 58.000 75.000 21.000 22.000 6.594 40.561 °C
Temp LM16 67.500 68.000 68.500 69.000 70.000 70.000 70.500 1.500 2.000 0.481 69.030 °C
Temp LM17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM2 40.000 40.500 41.250 43.750 67.500 70.000 88.000 26.250 29.500 8.360 47.070 °C
Temp LM20 40.000 40.500 41.000 43.125 68.250 70.000 86.750 27.250 29.500 8.833 46.982 °C
Temp LM21 67.750 68.000 68.500 69.250 70.000 70.250 70.500 1.500 2.250 0.456 69.167 °C
Temp LM22 36.000 37.000 37.000 39.000 41.000 42.000 43.000 4.000 5.000 1.064 38.691 °C
Temp LM23 63.850 66.850 68.850 71.850 72.850 72.850 74.850 4.000 6.000 1.376 71.253 °C
Temp LM3 48.000 48.000 48.000 51.000 52.000 53.000 53.000 4.000 5.000 1.108 50.287 °C
Temp LM4 49.850 50.850 50.850 51.850 53.850 56.850 58.850 3.000 6.000 1.094 52.344 °C
Temp LM5 49.850 50.850 50.850 51.850 53.850 56.850 58.850 3.000 6.000 1.093 52.357 °C
Temp LM6 57.850 58.850 59.850 60.850 64.850 73.850 77.850 5.000 15.000 2.326 61.389 °C
Temp LM7 49.850 50.850 50.850 51.850 53.850 56.850 58.850 3.000 6.000 1.090 52.368 °C
Temp LM8 45.000 45.000 46.000 47.000 48.000 48.000 48.000 2.000 3.000 0.708 46.596 °C
Temp LM9 35.500 36.000 36.500 38.000 47.000 48.000 56.500 10.500 12.000 3.228 39.329 °C

The frequency offsets and temperatures. Showing frequency offset (red, in parts per million, scale on right) and the temperatures.

These are field 4 (frequency) from the loopstats log file, and field 3 from the tempstats log file.



Local GPS

local gps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
nSats 7.000 9.000 10.000 13.000 15.000 17.000 18.000 5.000 8.000 1.634 12.613 nSat 0.009042 3.048
TDOP 0.650 0.790 0.870 1.230 2.160 3.280 6.870 1.290 2.490 0.469 1.348 2.67 15.62

Local GPS. The Time Dilution of Precision (TDOP) is plotted in blue. The number of visible satellites (nSat) is plotted in red.

TDOP is field 3, and nSats is field 4, from the gpsd log file. The gpsd log file is created by the ntploggps program.

TDOP is a dimensionless error factor. Smaller numbers are better. TDOP ranges from 1 (ideal), 2 to 5 (good), to greater than 20 (poor). Some GNSS receivers report TDOP less than one which is theoretically impossible.



Server Offsets

peer offsets plot

The offset of all refclocks and servers. This can be useful to see if offset changes are happening in a single clock or all clocks together.

Clock Offset is field 5 in the peerstats log file.



Server Offset 2001:470:e815::24 (pi4.rellim.com)

peer offset 2001:470:e815::24 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:470:e815::24 (pi4.rellim.com) -281.998 -0.138 -0.070 0.009 0.073 0.207 0.555 0.143 0.345 4.358 -0.058 ms -64.68 4185

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2001:470:e815::8 (spidey.rellim.com)

peer offset 2001:470:e815::8 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:470:e815::8 (spidey.rellim.com) -281.988 -0.482 -0.231 0.010 0.205 0.363 0.541 0.436 0.846 8.526 -0.265 ms -33 1090

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.1

peer offset 204.17.205.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.1 -282.274 -0.732 -0.441 0.003 0.266 0.361 0.543 0.707 1.093 4.382 -0.092 ms -64.22 4135

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.30

peer offset 204.17.205.30 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.30 -282.158 -0.165 -0.086 -0.015 0.042 0.140 0.444 0.128 0.304 6.315 -0.157 ms -44.63 1993

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2405:fc00::1 (robusta.dcs1.biz)

peer offset 2405:fc00::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2405:fc00::1 (robusta.dcs1.biz) -282.565 4.191 4.489 5.080 7.246 7.601 8.020 2.758 3.410 6.493 5.288 ms -43.45 1926

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com)

peer offset 2604:a880:1:20::17:5001 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com) -273.263 0.390 0.710 1.121 1.522 1.773 2.712 0.812 1.383 6.176 0.966 ms -43.73 1939

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::1 (time.cloudflare.com)

peer offset 2606:4700:f1::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::1 (time.cloudflare.com) 1.564 1.806 2.026 2.407 2.659 2.799 3.167 0.633 0.993 0.184 2.394 ms -0.7734 5.618

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::123 (time.cloudflare.com)

peer offset 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::123 (time.cloudflare.com) -13.375 2.102 2.233 2.452 2.725 2.888 4.025 0.492 0.786 0.524 2.447 ms -26.47 799.2

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset SHM(0)

peer offset SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset SHM(0) -412.219 -140.211 -138.078 -132.759 -128.448 -126.780 -122.595 9.631 13.430 3.760 -132.952 ms -28.09 2071

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Jitters

peer jitters plot

The RMS Jitter of all refclocks and servers. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:470:e815::24 (pi4.rellim.com)

peer jitter 2001:470:e815::24 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:470:e815::24 (pi4.rellim.com) 0.000 0.004 0.008 0.051 0.140 0.172 5.417 0.133 0.167 0.136 0.064 ms 32.2 1160

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:470:e815::8 (spidey.rellim.com)

peer jitter 2001:470:e815::8 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:470:e815::8 (spidey.rellim.com) 0.000 3.118 5.549 37.280 130.609 181.489 225.441 125.060 178.371 41.173 49.504 µs 1.382 4.521

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.1

peer jitter 204.17.205.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.1 0.000 4.320 7.654 38.751 162.078 201.301 264.394 154.424 196.981 51.760 61.167 µs 1.004 2.992

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.30

peer jitter 204.17.205.30 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.30 0.000 4.634 9.283 58.436 157.361 199.763 283.086 148.078 195.129 47.420 69.614 µs 0.8577 3.531

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2405:fc00::1 (robusta.dcs1.biz)

peer jitter 2405:fc00::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2405:fc00::1 (robusta.dcs1.biz) 0.000 0.167 0.243 0.636 2.913 7.221 117.616 2.670 7.054 5.564 1.299 ms 18.36 362

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com)

peer jitter 2604:a880:1:20::17:5001 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.000 0.153 0.227 0.610 2.924 11.708 100.862 2.697 11.555 3.805 1.227 ms 19.42 479.2

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::1 (time.cloudflare.com)

peer jitter 2606:4700:f1::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::1 (time.cloudflare.com) 0.000 0.140 0.190 0.460 1.482 8.281 10.852 1.292 8.142 1.061 0.678 ms 7.385 63.37

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::123 (time.cloudflare.com)

peer jitter 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 0.000 0.130 0.197 0.491 2.196 5.850 32.029 1.999 5.721 1.902 0.818 ms 12.19 179.5

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter SHM(0)

peer jitter SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter SHM(0) 0.000 0.262 0.386 0.968 2.548 4.444 282.069 2.163 4.181 2.802 1.222 ms 64.63 5188

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Summary


Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 11.970 12.032 12.104 12.443 13.611 13.683 13.742 1.507 1.650 0.447 12.569 ppm 1.289 3.652
Local Clock Time Offset -325.389 -122.638 -61.436 -1.070 54.583 177.423 451.822 116.019 300.061 46.539 -0.187 µs 1.475 20.23
Local RMS Frequency Jitter 0.000 5.016 6.926 14.071 47.222 82.576 153.200 40.296 77.560 14.821 18.193 ppb 3.459 19.05
Local RMS Time Jitter 0.001 10.050 13.327 26.330 55.306 83.701 184.243 41.979 73.651 14.599 29.413 µs 2.486 15.38
Server Jitter 2001:470:e815::24 (pi4.rellim.com) 0.000 0.004 0.008 0.051 0.140 0.172 5.417 0.133 0.167 0.136 0.064 ms 32.2 1160
Server Jitter 2001:470:e815::8 (spidey.rellim.com) 0.000 3.118 5.549 37.280 130.609 181.489 225.441 125.060 178.371 41.173 49.504 µs 1.382 4.521
Server Jitter 204.17.205.1 0.000 4.320 7.654 38.751 162.078 201.301 264.394 154.424 196.981 51.760 61.167 µs 1.004 2.992
Server Jitter 204.17.205.30 0.000 4.634 9.283 58.436 157.361 199.763 283.086 148.078 195.129 47.420 69.614 µs 0.8577 3.531
Server Jitter 2405:fc00::1 (robusta.dcs1.biz) 0.000 0.167 0.243 0.636 2.913 7.221 117.616 2.670 7.054 5.564 1.299 ms 18.36 362
Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.000 0.153 0.227 0.610 2.924 11.708 100.862 2.697 11.555 3.805 1.227 ms 19.42 479.2
Server Jitter 2606:4700:f1::1 (time.cloudflare.com) 0.000 0.140 0.190 0.460 1.482 8.281 10.852 1.292 8.142 1.061 0.678 ms 7.385 63.37
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 0.000 0.130 0.197 0.491 2.196 5.850 32.029 1.999 5.721 1.902 0.818 ms 12.19 179.5
Server Jitter SHM(0) 0.000 0.262 0.386 0.968 2.548 4.444 282.069 2.163 4.181 2.802 1.222 ms 64.63 5188
Server Offset 2001:470:e815::24 (pi4.rellim.com) -281.998 -0.138 -0.070 0.009 0.073 0.207 0.555 0.143 0.345 4.358 -0.058 ms -64.68 4185
Server Offset 2001:470:e815::8 (spidey.rellim.com) -281.988 -0.482 -0.231 0.010 0.205 0.363 0.541 0.436 0.846 8.526 -0.265 ms -33 1090
Server Offset 204.17.205.1 -282.274 -0.732 -0.441 0.003 0.266 0.361 0.543 0.707 1.093 4.382 -0.092 ms -64.22 4135
Server Offset 204.17.205.30 -282.158 -0.165 -0.086 -0.015 0.042 0.140 0.444 0.128 0.304 6.315 -0.157 ms -44.63 1993
Server Offset 2405:fc00::1 (robusta.dcs1.biz) -282.565 4.191 4.489 5.080 7.246 7.601 8.020 2.758 3.410 6.493 5.288 ms -43.45 1926
Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com) -273.263 0.390 0.710 1.121 1.522 1.773 2.712 0.812 1.383 6.176 0.966 ms -43.73 1939
Server Offset 2606:4700:f1::1 (time.cloudflare.com) 1.564 1.806 2.026 2.407 2.659 2.799 3.167 0.633 0.993 0.184 2.394 ms -0.7734 5.618
Server Offset 2606:4700:f1::123 (time.cloudflare.com) -13.375 2.102 2.233 2.452 2.725 2.888 4.025 0.492 0.786 0.524 2.447 ms -26.47 799.2
Server Offset SHM(0) -412.219 -140.211 -138.078 -132.759 -128.448 -126.780 -122.595 9.631 13.430 3.760 -132.952 ms -28.09 2071
TDOP 0.650 0.790 0.870 1.230 2.160 3.280 6.870 1.290 2.490 0.469 1.348 2.67 15.62
Temp /dev/nvme0n1 50.000 51.000 52.000 71.000 73.000 73.000 75.000 21.000 22.000 8.140 67.151 °C
Temp /dev/nvme1n1 51.000 51.000 51.000 53.000 72.000 73.000 73.000 21.000 22.000 7.802 56.736 °C
Temp /dev/sda 48.000 48.000 48.000 51.000 52.000 53.000 53.000 4.000 5.000 1.119 50.286 °C
Temp /dev/sdb 36.000 37.000 37.000 39.000 41.000 42.000 43.000 4.000 5.000 1.077 38.598 °C
Temp LM0 48.000 49.000 50.000 54.000 58.000 58.000 59.000 8.000 9.000 2.702 54.172 °C
Temp LM1 40.000 40.500 41.000 43.125 68.250 70.000 86.875 27.250 29.500 8.840 46.992 °C
Temp LM10 25.000 25.000 25.000 25.000 25.000 25.000 26.000 0.000 0.000 0.055 25.003 °C
Temp LM11 62.000 63.000 63.000 64.000 65.000 65.000 66.000 2.000 2.000 0.605 63.842 °C
Temp LM12 3.000 5.000 6.000 22.000 27.000 32.000 38.000 21.000 27.000 6.361 19.831 °C
Temp LM13 25.000 25.000 25.000 25.000 25.000 25.000 26.000 0.000 0.000 0.086 25.007 °C
Temp LM14 45.000 45.000 46.000 47.000 48.000 48.000 48.000 2.000 3.000 0.709 46.595 °C
Temp LM15 35.000 36.000 36.000 38.000 57.000 58.000 75.000 21.000 22.000 6.594 40.561 °C
Temp LM16 67.500 68.000 68.500 69.000 70.000 70.000 70.500 1.500 2.000 0.481 69.030 °C
Temp LM17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM2 40.000 40.500 41.250 43.750 67.500 70.000 88.000 26.250 29.500 8.360 47.070 °C
Temp LM20 40.000 40.500 41.000 43.125 68.250 70.000 86.750 27.250 29.500 8.833 46.982 °C
Temp LM21 67.750 68.000 68.500 69.250 70.000 70.250 70.500 1.500 2.250 0.456 69.167 °C
Temp LM22 36.000 37.000 37.000 39.000 41.000 42.000 43.000 4.000 5.000 1.064 38.691 °C
Temp LM23 63.850 66.850 68.850 71.850 72.850 72.850 74.850 4.000 6.000 1.376 71.253 °C
Temp LM3 48.000 48.000 48.000 51.000 52.000 53.000 53.000 4.000 5.000 1.108 50.287 °C
Temp LM4 49.850 50.850 50.850 51.850 53.850 56.850 58.850 3.000 6.000 1.094 52.344 °C
Temp LM5 49.850 50.850 50.850 51.850 53.850 56.850 58.850 3.000 6.000 1.093 52.357 °C
Temp LM6 57.850 58.850 59.850 60.850 64.850 73.850 77.850 5.000 15.000 2.326 61.389 °C
Temp LM7 49.850 50.850 50.850 51.850 53.850 56.850 58.850 3.000 6.000 1.090 52.368 °C
Temp LM8 45.000 45.000 46.000 47.000 48.000 48.000 48.000 2.000 3.000 0.708 46.596 °C
Temp LM9 35.500 36.000 36.500 38.000 47.000 48.000 56.500 10.500 12.000 3.228 39.329 °C
nSats 7.000 9.000 10.000 13.000 15.000 17.000 18.000 5.000 8.000 1.634 12.613 nSat 0.009042 3.048
Summary as CSV file


This server:

Motherboard:
OS: Gentoo unstable
GPS:
GPS/PPS server: gpsd
NTP server: NTPsec
../ntp.conf

Notes:

Feb 21 03:28:57 UTC 2019: New install

Glossary:

frequency offset:
The difference between the ntpd calculated frequency and the local system clock frequency (usually in parts per million, ppm)
jitter, dispersion:
The short term change in a value. NTP measures Local Time Jitter, Refclock Jitter, and Server Jitter in seconds. Local Frequency Jitter is in ppm or ppb.
ms, millisecond:
One thousandth of a second = 0.001 seconds, 1e-3 seconds
mu, mean:
The arithmetic mean: the sum of all the values divided by the number of values. The formula for mu is: "mu = (∑xi) / N". Where xi denotes the data points and N is the number of data points.
ns, nanosecond:
One billionth of a second, also one thousandth of a microsecond, 0.000000001 seconds and 1e-9 seconds.
percentile:
The value below which a given percentage of values fall.
ppb, parts per billion:
Ratio between two values. These following are all the same: 1 ppb, one in one billion, 1/1,000,000,000, 0.000,000,001, 1e-9 and 0.000,000,1%
ppm, parts per million:
Ratio between two values. These following are all the same: 1 ppm, one in one million, 1/1,000,000, 0.000,001, and 0.000,1%
‰, parts per thousand:
Ratio between two values. These following are all the same: 1 ‰. one in one thousand, 1/1,000, 0.001, and 0.1%
refclock:
Reference clock, a local GPS module or other local source of time.
remote clock:
Any clock reached over the network, LAN or WAN. Also called a peer or server.
time offset:
The difference between the ntpd calculated time and the local system clock's time. Also called phase offset.
σ, sigma:
Sigma denotes the standard deviation (SD) and is centered on the arithmetic mean of the data set. The SD is simply the square root of the variance of the data set. Two sigma is simply twice the standard deviation. Three sigma is three times sigma. Smaller is better.
The formula for sigma is: "σ = √[ ∑(xi-mu)^2 / N ]". Where xi denotes the data points and N is the number of data points.
Skewness, Skew:
The skewness of a random variable X is the third standardized moment and is a dimension-less ratio. ntpviz uses the FIsher-Pearson moment of skewness. There are other different ways to calculate Skewness Wikipedia describes Skewness best: "The qualitative interpretation of the skew is complicated and unintuitive."
A normal distribution has a skewness of zero.
Kurtosis, Kurt:
The kurtosis of a random variable X is the fourth standardized moment and is a dimension-less ratio. ntpviz uses standard Kurtosis. There are other different ways to calculate Kurtosis.
A normal distribution has a Kurtosis of three. NIST describes a kurtosis over three as "heavy tailed" and one under three as "light tailed".
upstream clock:
Any server or reference clock used as a source of time.
µs, us, microsecond:
One millionth of a second, also one thousandth of a millisecond, 0.000,001 seconds, and 1e-6 seconds.



This page autogenerated by ntpviz, part of the NTPsec project
html 5    Valid CSS!