NTPsec

Kong

Report generated: Tue Nov 18 05:49:01 2025 UTC
Start Time: Mon Nov 17 05:49:00 2025 UTC
End Time: Tue Nov 18 05:49:00 2025 UTC
Report Period: 1.0 days
Warning: plots clipped

Daily stats   Weekly stats   Live GNSS Data   24 Hour Scatter Plots: ( )

Local Clock Time/Frequency Offsets

local offset plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Time Offset -708.349 -293.351 -75.848 -2.369 38.196 215.804 356.490 114.044 509.155 70.431 -9.252 µs -3.437 36.42
Local Clock Frequency Offset 11.987 11.994 12.015 12.219 12.955 14.526 14.539 0.940 2.532 0.428 12.330 ppm 3.713 18.51

The time and frequency offsets between the ntpd calculated time and the local system clock. Showing frequency offset (red, in parts per million, scale on right) and the time offset (blue, in μs, scale on left). Quick changes in time offset will lead to larger frequency offsets.

These are fields 3 (time) and 4 (frequency) from the loopstats log file.



Local RMS Time Jitter

local jitter plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Time Jitter 9.008 9.825 12.241 22.190 80.008 120.713 132.451 67.767 110.888 21.261 28.671 µs 2.633 10.17

The RMS Jitter of the local clock offset. In other words, how fast the local clock offset is changing.

Lower is better. An ideal system would be a horizontal line at 0μs.

RMS jitter is field 5 in the loopstats log file.



Local RMS Frequency Jitter

local stability plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Frequency Jitter 4.545 5.095 6.580 12.880 94.038 152.132 193.019 87.458 147.037 30.127 23.512 ppb 3.032 12.51

The RMS Frequency Jitter (aka wander) of the local clock's frequency. In other words, how fast the local clock changes frequency.

Lower is better. An ideal clock would be a horizontal line at 0ppm.

RMS Frequency Jitter is field 6 in the loopstats log file.



Local Clock Time Offset Histogram

local offset histogram plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Offset -708.349 -293.351 -75.848 -2.369 38.196 215.804 356.490 114.044 509.155 70.431 -9.252 µs -3.437 36.42

The clock offsets of the local clock as a histogram.

The Local Clock Offset is field 3 from the loopstats log file.



Local Temperatures

local temps plot

Local temperatures. These will be site-specific depending upon what temperature sensors you collect data from. Temperature changes affect the local clock crystal frequency and stability. The math of how temperature changes frequency is complex, and also depends on crystal aging. So there is no easy way to correct for it in software. This is the single most important component of frequency drift.

The Local Temperatures are from field 3 from the tempstats log file.



Local Frequency/Temp

local freq temps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 11.987 11.994 12.015 12.219 12.955 14.526 14.539 0.940 2.532 0.428 12.330 ppm 3.713 18.51
Temp /dev/nvme0n1 58.000 58.000 66.000 71.000 72.000 73.000 74.000 6.000 15.000 2.696 69.826 °C
Temp /dev/nvme1n1 45.000 45.000 50.000 52.000 54.000 55.000 59.000 4.000 10.000 1.745 51.951 °C
Temp /dev/sda 46.000 46.000 46.000 48.000 50.000 50.000 50.000 4.000 4.000 1.332 48.049 °C
Temp /dev/sdb 35.000 35.000 35.000 36.000 38.000 38.000 38.000 3.000 3.000 0.937 36.285 °C
Temp LM0 49.000 49.000 50.000 54.000 58.000 59.000 60.000 8.000 10.000 2.428 54.066 °C
Temp LM1 39.750 39.875 40.000 41.125 46.875 75.000 78.500 6.875 35.125 6.061 42.575 °C
Temp LM10 25.000 25.000 25.000 25.000 25.000 25.000 26.000 0.000 0.000 0.083 25.007 °C
Temp LM11 69.000 70.000 74.000 78.000 80.000 80.000 80.000 6.000 10.000 1.777 77.854 °C
Temp LM12 7.000 9.000 17.000 24.000 33.000 43.000 50.000 16.000 34.000 5.696 23.816 °C
Temp LM13 25.000 25.000 25.000 25.000 25.000 25.000 25.000 0.000 0.000 0.000 25.000 °C
Temp LM14 39.000 39.000 39.000 41.000 43.000 44.000 44.000 4.000 5.000 1.100 40.774 °C
Temp LM15 35.000 35.000 35.000 36.000 39.000 64.000 67.000 4.000 29.000 4.791 37.066 °C
Temp LM16 77.000 77.500 82.500 87.500 89.500 90.000 90.500 7.000 12.500 2.178 87.179 °C
Temp LM17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM2 39.250 39.250 39.750 41.250 48.000 75.000 78.000 8.250 35.750 5.867 42.708 °C
Temp LM20 39.750 39.875 40.000 41.125 46.875 75.875 78.750 6.875 36.000 6.085 42.571 °C
Temp LM21 77.250 77.750 82.500 87.625 89.750 90.250 90.625 7.250 12.500 2.172 87.319 °C
Temp LM22 35.000 35.000 35.000 37.000 38.000 38.000 38.000 3.000 3.000 0.907 36.344 °C
Temp LM23 57.850 57.850 65.850 70.850 71.850 72.850 73.850 6.000 15.000 2.674 69.683 °C
Temp LM3 46.000 46.000 46.000 48.000 50.000 50.000 50.000 4.000 4.000 1.335 48.056 °C
Temp LM4 44.850 44.850 49.850 51.850 53.850 54.850 59.850 4.000 10.000 1.759 51.794 °C
Temp LM5 44.850 44.850 49.850 51.850 53.850 54.850 59.850 4.000 10.000 1.756 51.805 °C
Temp LM6 52.850 53.850 57.850 60.850 62.850 66.850 77.850 5.000 13.000 2.171 60.517 °C
Temp LM7 44.850 44.850 49.850 51.850 53.850 54.850 59.850 4.000 10.000 1.771 51.815 °C
Temp LM8 39.000 39.000 39.000 41.000 43.000 44.000 44.000 4.000 5.000 1.096 40.764 °C
Temp LM9 35.000 35.500 35.500 36.000 39.500 53.500 54.000 4.000 18.000 2.804 36.917 °C

The frequency offsets and temperatures. Showing frequency offset (red, in parts per million, scale on right) and the temperatures.

These are field 4 (frequency) from the loopstats log file, and field 3 from the tempstats log file.



Local GPS

local gps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
nSats 8.000 10.000 11.000 13.000 16.000 17.000 19.000 5.000 7.000 1.464 13.221 nSat 0.19 3.042
TDOP 0.610 0.670 0.730 1.000 1.660 2.100 4.710 0.930 1.430 0.335 1.074 3.238 24.1

Local GPS. The Time Dilution of Precision (TDOP) is plotted in blue. The number of visible satellites (nSat) is plotted in red.

TDOP is field 3, and nSats is field 4, from the gpsd log file. The gpsd log file is created by the ntploggps program.

TDOP is a dimensionless error factor. Smaller numbers are better. TDOP ranges from 1 (ideal), 2 to 5 (good), to greater than 20 (poor). Some GNSS receivers report TDOP less than one which is theoretically impossible.



Server Offsets

peer offsets plot

The offset of all refclocks and servers. This can be useful to see if offset changes are happening in a single clock or all clocks together.

Clock Offset is field 5 in the peerstats log file.



Server Offset 2001:470:e815::24 (pi4.rellim.com)

peer offset 2001:470:e815::24 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:470:e815::24 (pi4.rellim.com) -825.842 -260.315 -91.280 1.898 55.129 249.826 447.619 146.409 510.141 79.781 -6.042 µs -2.221 33.81

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2001:470:e815::8 (spidey.rellim.com)

peer offset 2001:470:e815::8 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:470:e815::8 (spidey.rellim.com) -685.412 -241.782 -41.009 27.349 87.300 311.946 507.864 128.309 553.728 81.229 21.623 µs -2.594 32.22

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.1

peer offset 204.17.205.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.1 -0.057 0.218 0.441 0.693 1.132 1.177 1.199 0.691 0.959 0.206 0.734 ms 0.1658 3.439

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.30

peer offset 204.17.205.30 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.30 -557.908 -520.478 -99.895 -16.801 31.797 249.587 357.348 131.692 770.065 79.458 -25.410 µs -2.918 27.26

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2405:fc00::1 (robusta.dcs1.biz)

peer offset 2405:fc00::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2405:fc00::1 (robusta.dcs1.biz) 0.462 0.713 1.103 1.626 2.051 2.258 2.956 0.948 1.545 0.300 1.610 ms -0.1989 4.873

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com)

peer offset 2604:a880:1:20::17:5001 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.691 0.861 1.084 1.502 2.206 2.491 2.516 1.122 1.630 0.350 1.566 ms 0.4768 2.779

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::1 (time.cloudflare.com)

peer offset 2606:4700:f1::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::1 (time.cloudflare.com) 1.044 1.081 1.361 1.673 2.000 2.242 2.381 0.639 1.161 0.202 1.677 ms 0.03727 4.167

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::123 (time.cloudflare.com)

peer offset 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::123 (time.cloudflare.com) 1.017 1.017 1.363 1.715 2.329 2.835 2.835 0.965 1.819 0.298 1.758 ms 0.9682 5.326

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset SHM(0)

peer offset SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset SHM(0) -154.514 -139.333 -136.979 -132.430 -128.613 -127.227 -125.875 8.366 12.106 2.630 -132.532 ms -0.6261 5.441

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Jitters

peer jitters plot

The RMS Jitter of all refclocks and servers. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:470:e815::24 (pi4.rellim.com)

peer jitter 2001:470:e815::24 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:470:e815::24 (pi4.rellim.com) 2.603 5.350 14.396 111.817 176.000 210.542 351.694 161.604 205.192 49.451 105.937 µs -0.08829 3.47

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:470:e815::8 (spidey.rellim.com)

peer jitter 2001:470:e815::8 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:470:e815::8 (spidey.rellim.com) 1.783 3.804 6.974 36.846 149.034 227.490 317.146 142.060 223.686 50.258 54.239 µs 1.643 6.363

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.1

peer jitter 204.17.205.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.1 3.411 6.350 17.274 132.394 233.920 270.041 378.747 216.646 263.691 68.546 127.892 µs -0.009025 2.553

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.30

peer jitter 204.17.205.30 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.30 3.109 7.493 16.085 132.304 231.134 361.814 518.516 215.049 354.321 68.637 130.166 µs 0.791 6.645

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2405:fc00::1 (robusta.dcs1.biz)

peer jitter 2405:fc00::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2405:fc00::1 (robusta.dcs1.biz) 0.234 0.267 0.583 1.159 3.010 24.996 79.538 2.427 24.729 7.272 2.315 ms 8.898 90.46

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com)

peer jitter 2604:a880:1:20::17:5001 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.149 0.285 0.456 1.065 1.897 2.225 5.795 1.441 1.940 0.574 1.111 ms 3.808 31.09

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::1 (time.cloudflare.com)

peer jitter 2606:4700:f1::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::1 (time.cloudflare.com) 0.283 0.292 0.428 1.031 1.769 1.950 3.411 1.342 1.658 0.422 1.057 ms 0.9667 6.482

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::123 (time.cloudflare.com)

peer jitter 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 0.202 0.202 0.486 1.147 1.664 1.965 1.965 1.179 1.763 0.341 1.120 ms -0.2304 3.674

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter SHM(0)

peer jitter SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter SHM(0) 0.143 0.273 0.393 0.967 2.324 3.641 18.716 1.931 3.368 0.901 1.146 ms 7.625 114.7

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Summary


Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 11.987 11.994 12.015 12.219 12.955 14.526 14.539 0.940 2.532 0.428 12.330 ppm 3.713 18.51
Local Clock Time Offset -708.349 -293.351 -75.848 -2.369 38.196 215.804 356.490 114.044 509.155 70.431 -9.252 µs -3.437 36.42
Local RMS Frequency Jitter 4.545 5.095 6.580 12.880 94.038 152.132 193.019 87.458 147.037 30.127 23.512 ppb 3.032 12.51
Local RMS Time Jitter 9.008 9.825 12.241 22.190 80.008 120.713 132.451 67.767 110.888 21.261 28.671 µs 2.633 10.17
Server Jitter 2001:470:e815::24 (pi4.rellim.com) 2.603 5.350 14.396 111.817 176.000 210.542 351.694 161.604 205.192 49.451 105.937 µs -0.08829 3.47
Server Jitter 2001:470:e815::8 (spidey.rellim.com) 1.783 3.804 6.974 36.846 149.034 227.490 317.146 142.060 223.686 50.258 54.239 µs 1.643 6.363
Server Jitter 204.17.205.1 3.411 6.350 17.274 132.394 233.920 270.041 378.747 216.646 263.691 68.546 127.892 µs -0.009025 2.553
Server Jitter 204.17.205.30 3.109 7.493 16.085 132.304 231.134 361.814 518.516 215.049 354.321 68.637 130.166 µs 0.791 6.645
Server Jitter 2405:fc00::1 (robusta.dcs1.biz) 0.234 0.267 0.583 1.159 3.010 24.996 79.538 2.427 24.729 7.272 2.315 ms 8.898 90.46
Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.149 0.285 0.456 1.065 1.897 2.225 5.795 1.441 1.940 0.574 1.111 ms 3.808 31.09
Server Jitter 2606:4700:f1::1 (time.cloudflare.com) 0.283 0.292 0.428 1.031 1.769 1.950 3.411 1.342 1.658 0.422 1.057 ms 0.9667 6.482
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 0.202 0.202 0.486 1.147 1.664 1.965 1.965 1.179 1.763 0.341 1.120 ms -0.2304 3.674
Server Jitter SHM(0) 0.143 0.273 0.393 0.967 2.324 3.641 18.716 1.931 3.368 0.901 1.146 ms 7.625 114.7
Server Offset 2001:470:e815::24 (pi4.rellim.com) -825.842 -260.315 -91.280 1.898 55.129 249.826 447.619 146.409 510.141 79.781 -6.042 µs -2.221 33.81
Server Offset 2001:470:e815::8 (spidey.rellim.com) -685.412 -241.782 -41.009 27.349 87.300 311.946 507.864 128.309 553.728 81.229 21.623 µs -2.594 32.22
Server Offset 204.17.205.1 -0.057 0.218 0.441 0.693 1.132 1.177 1.199 0.691 0.959 0.206 0.734 ms 0.1658 3.439
Server Offset 204.17.205.30 -557.908 -520.478 -99.895 -16.801 31.797 249.587 357.348 131.692 770.065 79.458 -25.410 µs -2.918 27.26
Server Offset 2405:fc00::1 (robusta.dcs1.biz) 0.462 0.713 1.103 1.626 2.051 2.258 2.956 0.948 1.545 0.300 1.610 ms -0.1989 4.873
Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.691 0.861 1.084 1.502 2.206 2.491 2.516 1.122 1.630 0.350 1.566 ms 0.4768 2.779
Server Offset 2606:4700:f1::1 (time.cloudflare.com) 1.044 1.081 1.361 1.673 2.000 2.242 2.381 0.639 1.161 0.202 1.677 ms 0.03727 4.167
Server Offset 2606:4700:f1::123 (time.cloudflare.com) 1.017 1.017 1.363 1.715 2.329 2.835 2.835 0.965 1.819 0.298 1.758 ms 0.9682 5.326
Server Offset SHM(0) -154.514 -139.333 -136.979 -132.430 -128.613 -127.227 -125.875 8.366 12.106 2.630 -132.532 ms -0.6261 5.441
TDOP 0.610 0.670 0.730 1.000 1.660 2.100 4.710 0.930 1.430 0.335 1.074 3.238 24.1
Temp /dev/nvme0n1 58.000 58.000 66.000 71.000 72.000 73.000 74.000 6.000 15.000 2.696 69.826 °C
Temp /dev/nvme1n1 45.000 45.000 50.000 52.000 54.000 55.000 59.000 4.000 10.000 1.745 51.951 °C
Temp /dev/sda 46.000 46.000 46.000 48.000 50.000 50.000 50.000 4.000 4.000 1.332 48.049 °C
Temp /dev/sdb 35.000 35.000 35.000 36.000 38.000 38.000 38.000 3.000 3.000 0.937 36.285 °C
Temp LM0 49.000 49.000 50.000 54.000 58.000 59.000 60.000 8.000 10.000 2.428 54.066 °C
Temp LM1 39.750 39.875 40.000 41.125 46.875 75.000 78.500 6.875 35.125 6.061 42.575 °C
Temp LM10 25.000 25.000 25.000 25.000 25.000 25.000 26.000 0.000 0.000 0.083 25.007 °C
Temp LM11 69.000 70.000 74.000 78.000 80.000 80.000 80.000 6.000 10.000 1.777 77.854 °C
Temp LM12 7.000 9.000 17.000 24.000 33.000 43.000 50.000 16.000 34.000 5.696 23.816 °C
Temp LM13 25.000 25.000 25.000 25.000 25.000 25.000 25.000 0.000 0.000 0.000 25.000 °C
Temp LM14 39.000 39.000 39.000 41.000 43.000 44.000 44.000 4.000 5.000 1.100 40.774 °C
Temp LM15 35.000 35.000 35.000 36.000 39.000 64.000 67.000 4.000 29.000 4.791 37.066 °C
Temp LM16 77.000 77.500 82.500 87.500 89.500 90.000 90.500 7.000 12.500 2.178 87.179 °C
Temp LM17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM2 39.250 39.250 39.750 41.250 48.000 75.000 78.000 8.250 35.750 5.867 42.708 °C
Temp LM20 39.750 39.875 40.000 41.125 46.875 75.875 78.750 6.875 36.000 6.085 42.571 °C
Temp LM21 77.250 77.750 82.500 87.625 89.750 90.250 90.625 7.250 12.500 2.172 87.319 °C
Temp LM22 35.000 35.000 35.000 37.000 38.000 38.000 38.000 3.000 3.000 0.907 36.344 °C
Temp LM23 57.850 57.850 65.850 70.850 71.850 72.850 73.850 6.000 15.000 2.674 69.683 °C
Temp LM3 46.000 46.000 46.000 48.000 50.000 50.000 50.000 4.000 4.000 1.335 48.056 °C
Temp LM4 44.850 44.850 49.850 51.850 53.850 54.850 59.850 4.000 10.000 1.759 51.794 °C
Temp LM5 44.850 44.850 49.850 51.850 53.850 54.850 59.850 4.000 10.000 1.756 51.805 °C
Temp LM6 52.850 53.850 57.850 60.850 62.850 66.850 77.850 5.000 13.000 2.171 60.517 °C
Temp LM7 44.850 44.850 49.850 51.850 53.850 54.850 59.850 4.000 10.000 1.771 51.815 °C
Temp LM8 39.000 39.000 39.000 41.000 43.000 44.000 44.000 4.000 5.000 1.096 40.764 °C
Temp LM9 35.000 35.500 35.500 36.000 39.500 53.500 54.000 4.000 18.000 2.804 36.917 °C
nSats 8.000 10.000 11.000 13.000 16.000 17.000 19.000 5.000 7.000 1.464 13.221 nSat 0.19 3.042
Summary as CSV file


This server:

Motherboard:
OS: Gentoo unstable
GPS/PPS server: gpsd
NTP server: NTPsec
../ntp.conf

Notes:

Feb 21 03:28:57 UTC 2019: New install

Glossary:

frequency offset:
The difference between the ntpd calculated frequency and the local system clock frequency (usually in parts per million, ppm)
jitter, dispersion:
The short term change in a value. NTP measures Local Time Jitter, Refclock Jitter, and Server Jitter in seconds. Local Frequency Jitter is in ppm or ppb.
ms, millisecond:
One thousandth of a second = 0.001 seconds, 1e-3 seconds
mu, mean:
The arithmetic mean: the sum of all the values divided by the number of values. The formula for mu is: "mu = (∑xi) / N". Where xi denotes the data points and N is the number of data points.
ns, nanosecond:
One billionth of a second, also one thousandth of a microsecond, 0.000000001 seconds and 1e-9 seconds.
percentile:
The value below which a given percentage of values fall.
ppb, parts per billion:
Ratio between two values. These following are all the same: 1 ppb, one in one billion, 1/1,000,000,000, 0.000,000,001, 1e-9 and 0.000,000,1%
ppm, parts per million:
Ratio between two values. These following are all the same: 1 ppm, one in one million, 1/1,000,000, 0.000,001, and 0.000,1%
‰, parts per thousand:
Ratio between two values. These following are all the same: 1 ‰. one in one thousand, 1/1,000, 0.001, and 0.1%
refclock:
Reference clock, a local GPS module or other local source of time.
remote clock:
Any clock reached over the network, LAN or WAN. Also called a peer or server.
time offset:
The difference between the ntpd calculated time and the local system clock's time. Also called phase offset.
σ, sigma:
Sigma denotes the standard deviation (SD) and is centered on the arithmetic mean of the data set. The SD is simply the square root of the variance of the data set. Two sigma is simply twice the standard deviation. Three sigma is three times sigma. Smaller is better.
The formula for sigma is: "σ = √[ ∑(xi-mu)^2 / N ]". Where xi denotes the data points and N is the number of data points.
Skewness, Skew:
The skewness of a random variable X is the third standardized moment and is a dimension-less ratio. ntpviz uses the FIsher-Pearson moment of skewness. There are other different ways to calculate Skewness Wikipedia describes Skewness best: "The qualitative interpretation of the skew is complicated and unintuitive."
A normal distribution has a skewness of zero.
Kurtosis, Kurt:
The kurtosis of a random variable X is the fourth standardized moment and is a dimension-less ratio. ntpviz uses standard Kurtosis. There are other different ways to calculate Kurtosis.
A normal distribution has a Kurtosis of three. NIST describes a kurtosis over three as "heavy tailed" and one under three as "light tailed".
upstream clock:
Any server or reference clock used as a source of time.
µs, us, microsecond:
One millionth of a second, also one thousandth of a millisecond, 0.000,001 seconds, and 1e-6 seconds.



This page autogenerated by ntpviz, part of the NTPsec project
html 5    Valid CSS!