NTPsec

Kong

Report generated: Mon Nov 24 07:49:01 2025 UTC
Start Time: Sun Nov 23 07:49:00 2025 UTC
End Time: Mon Nov 24 07:49:00 2025 UTC
Report Period: 1.0 days
Warning: plots clipped

Daily stats   Weekly stats   Live GNSS Data   24 Hour Scatter Plots: ( )

Local Clock Time/Frequency Offsets

local offset plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Time Offset -249.464 -79.120 -39.670 -2.156 33.200 106.242 376.502 72.870 185.362 38.086 -0.636 µs 2.919 38.39
Local Clock Frequency Offset 12.008 12.015 12.075 12.370 12.675 12.964 13.130 0.600 0.949 0.200 12.361 ppm 0.5665 3.756

The time and frequency offsets between the ntpd calculated time and the local system clock. Showing frequency offset (red, in parts per million, scale on right) and the time offset (blue, in μs, scale on left). Quick changes in time offset will lead to larger frequency offsets.

These are fields 3 (time) and 4 (frequency) from the loopstats log file.



Local RMS Time Jitter

local jitter plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Time Jitter 8.314 8.873 10.403 18.051 38.606 70.959 75.216 28.203 62.086 11.130 20.462 µs 2.762 12.21

The RMS Jitter of the local clock offset. In other words, how fast the local clock offset is changing.

Lower is better. An ideal system would be a horizontal line at 0μs.

RMS jitter is field 5 in the loopstats log file.



Local RMS Frequency Jitter

local stability plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Frequency Jitter 3.572 4.539 5.389 10.183 36.752 98.203 112.582 31.363 93.664 15.793 14.265 ppb 4.141 21.19

The RMS Frequency Jitter (aka wander) of the local clock's frequency. In other words, how fast the local clock changes frequency.

Lower is better. An ideal clock would be a horizontal line at 0ppm.

RMS Frequency Jitter is field 6 in the loopstats log file.



Local Clock Time Offset Histogram

local offset histogram plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Offset -249.464 -79.120 -39.670 -2.156 33.200 106.242 376.502 72.870 185.362 38.086 -0.636 µs 2.919 38.39

The clock offsets of the local clock as a histogram.

The Local Clock Offset is field 3 from the loopstats log file.



Local Temperatures

local temps plot

Local temperatures. These will be site-specific depending upon what temperature sensors you collect data from. Temperature changes affect the local clock crystal frequency and stability. The math of how temperature changes frequency is complex, and also depends on crystal aging. So there is no easy way to correct for it in software. This is the single most important component of frequency drift.

The Local Temperatures are from field 3 from the tempstats log file.



Local Frequency/Temp

local freq temps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 12.008 12.015 12.075 12.370 12.675 12.964 13.130 0.600 0.949 0.200 12.361 ppm 0.5665 3.756
Temp /dev/nvme0n1 58.000 59.000 64.000 70.000 72.000 72.000 72.000 8.000 13.000 2.525 69.582 °C
Temp /dev/nvme1n1 45.000 46.000 49.000 51.000 54.000 55.000 57.000 5.000 9.000 1.509 51.519 °C
Temp /dev/sda 45.000 45.000 45.000 48.000 50.000 50.000 50.000 5.000 5.000 1.519 47.666 °C
Temp /dev/sdb 34.000 34.000 34.000 36.000 38.000 38.000 38.000 4.000 4.000 1.256 35.895 °C
Temp LM0 49.000 49.000 50.000 54.000 57.000 58.000 59.000 7.000 9.000 2.427 53.638 °C
Temp LM1 40.125 40.625 41.125 42.500 46.875 61.125 73.750 5.750 20.500 3.310 43.064 °C
Temp LM10 25.000 25.000 25.000 25.000 25.000 26.000 26.000 0.000 1.000 0.174 25.031 °C
Temp LM11 70.000 71.000 75.000 79.000 79.000 80.000 80.000 4.000 9.000 1.483 78.206 °C
Temp LM12 4.000 9.000 16.000 20.000 24.000 25.000 27.000 8.000 16.000 2.467 19.899 °C
Temp LM13 25.000 25.000 25.000 25.000 25.000 25.000 25.000 0.000 0.000 0.000 25.000 °C
Temp LM14 38.000 38.000 38.000 40.000 41.000 42.000 43.000 3.000 4.000 1.056 40.129 °C
Temp LM15 35.000 36.000 36.000 37.000 39.000 50.000 62.000 3.000 14.000 2.399 37.247 °C
Temp LM16 78.000 79.000 83.500 88.500 90.000 90.500 90.500 6.500 11.500 1.960 87.981 °C
Temp LM17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM2 39.750 40.500 41.250 42.750 47.250 59.750 73.250 6.000 19.250 3.007 43.210 °C
Temp LM20 40.125 40.625 41.125 42.500 46.625 61.000 73.750 5.500 20.375 3.305 43.054 °C
Temp LM21 78.250 79.000 83.500 88.750 90.000 90.500 90.750 6.500 11.500 1.958 88.122 °C
Temp LM22 34.000 34.000 34.000 36.000 37.000 38.000 38.000 3.000 4.000 1.254 35.909 °C
Temp LM23 57.850 58.850 63.850 69.850 71.850 71.850 71.850 8.000 13.000 2.521 69.439 °C
Temp LM3 45.000 45.000 45.000 48.000 50.000 50.000 50.000 5.000 5.000 1.513 47.655 °C
Temp LM4 44.850 44.850 48.850 50.850 52.850 54.850 56.850 4.000 10.000 1.514 51.352 °C
Temp LM5 44.850 45.850 48.850 50.850 53.850 54.850 56.850 5.000 9.000 1.518 51.380 °C
Temp LM6 53.850 53.850 57.850 59.850 62.850 67.850 72.850 5.000 14.000 2.090 60.254 °C
Temp LM7 44.850 45.850 48.850 50.850 53.850 54.850 56.850 5.000 9.000 1.500 51.376 °C
Temp LM8 38.000 38.000 38.000 40.000 41.000 42.000 43.000 3.000 4.000 1.050 40.129 °C
Temp LM9 35.500 36.000 36.000 37.000 39.000 42.500 47.000 3.000 6.500 1.194 37.312 °C

The frequency offsets and temperatures. Showing frequency offset (red, in parts per million, scale on right) and the temperatures.

These are field 4 (frequency) from the loopstats log file, and field 3 from the tempstats log file.



Local GPS

local gps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
nSats 5.000 8.000 9.000 11.000 14.000 14.000 15.000 5.000 6.000 1.469 11.140 nSat -0.01836 2.903
TDOP 0.660 0.770 0.890 1.320 2.420 3.220 4.730 1.530 2.450 0.494 1.434 1.771 7.746

Local GPS. The Time Dilution of Precision (TDOP) is plotted in blue. The number of visible satellites (nSat) is plotted in red.

TDOP is field 3, and nSats is field 4, from the gpsd log file. The gpsd log file is created by the ntploggps program.

TDOP is a dimensionless error factor. Smaller numbers are better. TDOP ranges from 1 (ideal), 2 to 5 (good), to greater than 20 (poor). Some GNSS receivers report TDOP less than one which is theoretically impossible.



Server Offsets

peer offsets plot

The offset of all refclocks and servers. This can be useful to see if offset changes are happening in a single clock or all clocks together.

Clock Offset is field 5 in the peerstats log file.



Server Offset 2001:470:e815::24 (pi4.rellim.com)

peer offset 2001:470:e815::24 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:470:e815::24 (pi4.rellim.com) -178.825 -96.447 -59.418 3.588 50.259 142.639 449.065 109.677 239.086 44.799 4.792 µs 3.675 38.37

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2001:470:e815::8 (spidey.rellim.com)

peer offset 2001:470:e815::8 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:470:e815::8 (spidey.rellim.com) -190.617 -51.901 -16.873 26.900 70.976 85.780 372.972 87.849 137.681 34.438 27.413 µs 1.31 27.88

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.1

peer offset 204.17.205.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.1 -1.271 -1.120 -0.417 0.399 0.955 0.994 1.015 1.373 2.114 0.437 0.389 ms -1.299 5.501

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.30

peer offset 204.17.205.30 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.30 -384.137 -123.222 -63.890 -15.945 23.280 73.961 225.167 87.170 197.183 41.264 -18.495 µs -1.93 32.88

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2405:fc00::1 (robusta.dcs1.biz)

peer offset 2405:fc00::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2405:fc00::1 (robusta.dcs1.biz) 0.896 0.975 1.142 1.887 2.580 2.862 2.939 1.438 1.887 0.446 1.875 ms -0.0354 2.332

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com)

peer offset 2604:a880:1:20::17:5001 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 1.528 1.581 1.671 1.985 2.457 2.603 2.685 0.786 1.023 0.229 2.009 ms 0.5165 2.765

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::1 (time.cloudflare.com)

peer offset 2606:4700:f1::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::1 (time.cloudflare.com) 0.589 0.901 1.427 1.742 2.056 2.466 2.538 0.629 1.564 0.240 1.734 ms -0.8691 8.689

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::123 (time.cloudflare.com)

peer offset 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::123 (time.cloudflare.com) 0.078 0.343 1.438 1.761 2.140 2.209 2.357 0.702 1.866 0.274 1.739 ms -2.499 15.88

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset SHM(0)

peer offset SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset SHM(0) -157.951 -137.501 -135.644 -130.546 -126.911 -125.591 -124.570 8.732 11.910 2.744 -130.850 ms -0.8875 6.705

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Jitters

peer jitters plot

The RMS Jitter of all refclocks and servers. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:470:e815::24 (pi4.rellim.com)

peer jitter 2001:470:e815::24 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:470:e815::24 (pi4.rellim.com) 2.651 3.557 4.891 12.671 84.102 129.596 174.260 79.211 126.039 26.360 22.949 µs 2.471 9.369

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:470:e815::8 (spidey.rellim.com)

peer jitter 2001:470:e815::8 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:470:e815::8 (spidey.rellim.com) 2.000 3.357 5.464 24.303 92.609 124.909 170.364 87.145 121.552 30.419 35.712 µs 1.177 3.994

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.1

peer jitter 204.17.205.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.1 2.242 2.794 4.728 15.666 99.599 180.302 243.542 94.871 177.508 31.717 25.233 µs 3.573 18.19

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.30

peer jitter 204.17.205.30 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.30 2.666 3.637 5.565 15.466 114.477 166.596 207.267 108.912 162.959 34.394 27.537 µs 2.713 10.3

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2405:fc00::1 (robusta.dcs1.biz)

peer jitter 2405:fc00::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2405:fc00::1 (robusta.dcs1.biz) 0.201 0.240 0.430 1.054 7.818 31.838 46.524 7.387 31.597 4.851 2.210 ms 5.757 41.3

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com)

peer jitter 2604:a880:1:20::17:5001 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.154 0.243 0.400 1.123 3.511 9.979 23.366 3.111 9.736 1.724 1.383 ms 8.378 96.15

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::1 (time.cloudflare.com)

peer jitter 2606:4700:f1::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::1 (time.cloudflare.com) 0.167 0.175 0.224 1.008 3.264 27.850 27.956 3.039 27.675 4.322 1.904 ms 4.902 26.64

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::123 (time.cloudflare.com)

peer jitter 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 0.124 0.174 0.340 1.019 1.751 7.695 7.721 1.411 7.521 0.952 1.100 ms 5.098 33.5

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter SHM(0)

peer jitter SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter SHM(0) 0.136 0.297 0.439 1.109 2.771 6.958 27.203 2.331 6.661 1.225 1.350 ms 7.431 98.65

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Summary


Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 12.008 12.015 12.075 12.370 12.675 12.964 13.130 0.600 0.949 0.200 12.361 ppm 0.5665 3.756
Local Clock Time Offset -249.464 -79.120 -39.670 -2.156 33.200 106.242 376.502 72.870 185.362 38.086 -0.636 µs 2.919 38.39
Local RMS Frequency Jitter 3.572 4.539 5.389 10.183 36.752 98.203 112.582 31.363 93.664 15.793 14.265 ppb 4.141 21.19
Local RMS Time Jitter 8.314 8.873 10.403 18.051 38.606 70.959 75.216 28.203 62.086 11.130 20.462 µs 2.762 12.21
Server Jitter 2001:470:e815::24 (pi4.rellim.com) 2.651 3.557 4.891 12.671 84.102 129.596 174.260 79.211 126.039 26.360 22.949 µs 2.471 9.369
Server Jitter 2001:470:e815::8 (spidey.rellim.com) 2.000 3.357 5.464 24.303 92.609 124.909 170.364 87.145 121.552 30.419 35.712 µs 1.177 3.994
Server Jitter 204.17.205.1 2.242 2.794 4.728 15.666 99.599 180.302 243.542 94.871 177.508 31.717 25.233 µs 3.573 18.19
Server Jitter 204.17.205.30 2.666 3.637 5.565 15.466 114.477 166.596 207.267 108.912 162.959 34.394 27.537 µs 2.713 10.3
Server Jitter 2405:fc00::1 (robusta.dcs1.biz) 0.201 0.240 0.430 1.054 7.818 31.838 46.524 7.387 31.597 4.851 2.210 ms 5.757 41.3
Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.154 0.243 0.400 1.123 3.511 9.979 23.366 3.111 9.736 1.724 1.383 ms 8.378 96.15
Server Jitter 2606:4700:f1::1 (time.cloudflare.com) 0.167 0.175 0.224 1.008 3.264 27.850 27.956 3.039 27.675 4.322 1.904 ms 4.902 26.64
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 0.124 0.174 0.340 1.019 1.751 7.695 7.721 1.411 7.521 0.952 1.100 ms 5.098 33.5
Server Jitter SHM(0) 0.136 0.297 0.439 1.109 2.771 6.958 27.203 2.331 6.661 1.225 1.350 ms 7.431 98.65
Server Offset 2001:470:e815::24 (pi4.rellim.com) -178.825 -96.447 -59.418 3.588 50.259 142.639 449.065 109.677 239.086 44.799 4.792 µs 3.675 38.37
Server Offset 2001:470:e815::8 (spidey.rellim.com) -190.617 -51.901 -16.873 26.900 70.976 85.780 372.972 87.849 137.681 34.438 27.413 µs 1.31 27.88
Server Offset 204.17.205.1 -1.271 -1.120 -0.417 0.399 0.955 0.994 1.015 1.373 2.114 0.437 0.389 ms -1.299 5.501
Server Offset 204.17.205.30 -384.137 -123.222 -63.890 -15.945 23.280 73.961 225.167 87.170 197.183 41.264 -18.495 µs -1.93 32.88
Server Offset 2405:fc00::1 (robusta.dcs1.biz) 0.896 0.975 1.142 1.887 2.580 2.862 2.939 1.438 1.887 0.446 1.875 ms -0.0354 2.332
Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 1.528 1.581 1.671 1.985 2.457 2.603 2.685 0.786 1.023 0.229 2.009 ms 0.5165 2.765
Server Offset 2606:4700:f1::1 (time.cloudflare.com) 0.589 0.901 1.427 1.742 2.056 2.466 2.538 0.629 1.564 0.240 1.734 ms -0.8691 8.689
Server Offset 2606:4700:f1::123 (time.cloudflare.com) 0.078 0.343 1.438 1.761 2.140 2.209 2.357 0.702 1.866 0.274 1.739 ms -2.499 15.88
Server Offset SHM(0) -157.951 -137.501 -135.644 -130.546 -126.911 -125.591 -124.570 8.732 11.910 2.744 -130.850 ms -0.8875 6.705
TDOP 0.660 0.770 0.890 1.320 2.420 3.220 4.730 1.530 2.450 0.494 1.434 1.771 7.746
Temp /dev/nvme0n1 58.000 59.000 64.000 70.000 72.000 72.000 72.000 8.000 13.000 2.525 69.582 °C
Temp /dev/nvme1n1 45.000 46.000 49.000 51.000 54.000 55.000 57.000 5.000 9.000 1.509 51.519 °C
Temp /dev/sda 45.000 45.000 45.000 48.000 50.000 50.000 50.000 5.000 5.000 1.519 47.666 °C
Temp /dev/sdb 34.000 34.000 34.000 36.000 38.000 38.000 38.000 4.000 4.000 1.256 35.895 °C
Temp LM0 49.000 49.000 50.000 54.000 57.000 58.000 59.000 7.000 9.000 2.427 53.638 °C
Temp LM1 40.125 40.625 41.125 42.500 46.875 61.125 73.750 5.750 20.500 3.310 43.064 °C
Temp LM10 25.000 25.000 25.000 25.000 25.000 26.000 26.000 0.000 1.000 0.174 25.031 °C
Temp LM11 70.000 71.000 75.000 79.000 79.000 80.000 80.000 4.000 9.000 1.483 78.206 °C
Temp LM12 4.000 9.000 16.000 20.000 24.000 25.000 27.000 8.000 16.000 2.467 19.899 °C
Temp LM13 25.000 25.000 25.000 25.000 25.000 25.000 25.000 0.000 0.000 0.000 25.000 °C
Temp LM14 38.000 38.000 38.000 40.000 41.000 42.000 43.000 3.000 4.000 1.056 40.129 °C
Temp LM15 35.000 36.000 36.000 37.000 39.000 50.000 62.000 3.000 14.000 2.399 37.247 °C
Temp LM16 78.000 79.000 83.500 88.500 90.000 90.500 90.500 6.500 11.500 1.960 87.981 °C
Temp LM17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM2 39.750 40.500 41.250 42.750 47.250 59.750 73.250 6.000 19.250 3.007 43.210 °C
Temp LM20 40.125 40.625 41.125 42.500 46.625 61.000 73.750 5.500 20.375 3.305 43.054 °C
Temp LM21 78.250 79.000 83.500 88.750 90.000 90.500 90.750 6.500 11.500 1.958 88.122 °C
Temp LM22 34.000 34.000 34.000 36.000 37.000 38.000 38.000 3.000 4.000 1.254 35.909 °C
Temp LM23 57.850 58.850 63.850 69.850 71.850 71.850 71.850 8.000 13.000 2.521 69.439 °C
Temp LM3 45.000 45.000 45.000 48.000 50.000 50.000 50.000 5.000 5.000 1.513 47.655 °C
Temp LM4 44.850 44.850 48.850 50.850 52.850 54.850 56.850 4.000 10.000 1.514 51.352 °C
Temp LM5 44.850 45.850 48.850 50.850 53.850 54.850 56.850 5.000 9.000 1.518 51.380 °C
Temp LM6 53.850 53.850 57.850 59.850 62.850 67.850 72.850 5.000 14.000 2.090 60.254 °C
Temp LM7 44.850 45.850 48.850 50.850 53.850 54.850 56.850 5.000 9.000 1.500 51.376 °C
Temp LM8 38.000 38.000 38.000 40.000 41.000 42.000 43.000 3.000 4.000 1.050 40.129 °C
Temp LM9 35.500 36.000 36.000 37.000 39.000 42.500 47.000 3.000 6.500 1.194 37.312 °C
nSats 5.000 8.000 9.000 11.000 14.000 14.000 15.000 5.000 6.000 1.469 11.140 nSat -0.01836 2.903
Summary as CSV file


This server:

Motherboard:
OS: Gentoo unstable
GPS/PPS server: gpsd
NTP server: NTPsec
../ntp.conf

Notes:

Feb 21 03:28:57 UTC 2019: New install

Glossary:

frequency offset:
The difference between the ntpd calculated frequency and the local system clock frequency (usually in parts per million, ppm)
jitter, dispersion:
The short term change in a value. NTP measures Local Time Jitter, Refclock Jitter, and Server Jitter in seconds. Local Frequency Jitter is in ppm or ppb.
ms, millisecond:
One thousandth of a second = 0.001 seconds, 1e-3 seconds
mu, mean:
The arithmetic mean: the sum of all the values divided by the number of values. The formula for mu is: "mu = (∑xi) / N". Where xi denotes the data points and N is the number of data points.
ns, nanosecond:
One billionth of a second, also one thousandth of a microsecond, 0.000000001 seconds and 1e-9 seconds.
percentile:
The value below which a given percentage of values fall.
ppb, parts per billion:
Ratio between two values. These following are all the same: 1 ppb, one in one billion, 1/1,000,000,000, 0.000,000,001, 1e-9 and 0.000,000,1%
ppm, parts per million:
Ratio between two values. These following are all the same: 1 ppm, one in one million, 1/1,000,000, 0.000,001, and 0.000,1%
‰, parts per thousand:
Ratio between two values. These following are all the same: 1 ‰. one in one thousand, 1/1,000, 0.001, and 0.1%
refclock:
Reference clock, a local GPS module or other local source of time.
remote clock:
Any clock reached over the network, LAN or WAN. Also called a peer or server.
time offset:
The difference between the ntpd calculated time and the local system clock's time. Also called phase offset.
σ, sigma:
Sigma denotes the standard deviation (SD) and is centered on the arithmetic mean of the data set. The SD is simply the square root of the variance of the data set. Two sigma is simply twice the standard deviation. Three sigma is three times sigma. Smaller is better.
The formula for sigma is: "σ = √[ ∑(xi-mu)^2 / N ]". Where xi denotes the data points and N is the number of data points.
Skewness, Skew:
The skewness of a random variable X is the third standardized moment and is a dimension-less ratio. ntpviz uses the FIsher-Pearson moment of skewness. There are other different ways to calculate Skewness Wikipedia describes Skewness best: "The qualitative interpretation of the skew is complicated and unintuitive."
A normal distribution has a skewness of zero.
Kurtosis, Kurt:
The kurtosis of a random variable X is the fourth standardized moment and is a dimension-less ratio. ntpviz uses standard Kurtosis. There are other different ways to calculate Kurtosis.
A normal distribution has a Kurtosis of three. NIST describes a kurtosis over three as "heavy tailed" and one under three as "light tailed".
upstream clock:
Any server or reference clock used as a source of time.
µs, us, microsecond:
One millionth of a second, also one thousandth of a millisecond, 0.000,001 seconds, and 1e-6 seconds.



This page autogenerated by ntpviz, part of the NTPsec project
html 5    Valid CSS!