NTPsec

Kong

Report generated: Fri Jul 18 22:49:00 2025 UTC
Start Time: Thu Jul 17 22:49:00 2025 UTC
End Time: Fri Jul 18 22:49:00 2025 UTC
Report Period: 1.0 days
Warning: plots clipped

Daily stats   Weekly stats   Live GNSS Data   24 Hour Scatter Plots: ( )

Local Clock Time/Frequency Offsets

local offset plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Time Offset -92.157 -69.610 -47.338 -0.416 37.546 65.556 139.937 84.884 135.166 25.580 -2.397 µs 0.4038 7.022
Local Clock Frequency Offset 12.630 12.638 12.659 12.935 13.207 13.221 13.255 0.548 0.583 0.200 12.946 ppm -0.08802 1.484

The time and frequency offsets between the ntpd calculated time and the local system clock. Showing frequency offset (red, in parts per million, scale on right) and the time offset (blue, in μs, scale on left). Quick changes in time offset will lead to larger frequency offsets.

These are fields 3 (time) and 4 (frequency) from the loopstats log file.



Local RMS Time Jitter

local jitter plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Time Jitter 8.331 9.004 10.781 21.656 43.191 61.788 68.015 32.410 52.784 10.434 24.131 µs 1.112 4.639

The RMS Jitter of the local clock offset. In other words, how fast the local clock offset is changing.

Lower is better. An ideal system would be a horizontal line at 0μs.

RMS jitter is field 5 in the loopstats log file.



Local RMS Frequency Jitter

local stability plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Frequency Jitter 4.068 4.552 5.475 10.195 25.936 48.160 62.961 20.461 43.608 8.166 12.333 ppb 3.012 14.19

The RMS Frequency Jitter (aka wander) of the local clock's frequency. In other words, how fast the local clock changes frequency.

Lower is better. An ideal clock would be a horizontal line at 0ppm.

RMS Frequency Jitter is field 6 in the loopstats log file.



Local Clock Time Offset Histogram

local offset histogram plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Offset -92.157 -69.610 -47.338 -0.416 37.546 65.556 139.937 84.884 135.166 25.580 -2.397 µs 0.4038 7.022

The clock offsets of the local clock as a histogram.

The Local Clock Offset is field 3 from the loopstats log file.



Local Temperatures

local temps plot

Local temperatures. These will be site-specific depending upon what temperature sensors you collect data from. Temperature changes affect the local clock crystal frequency and stability. The math of how temperature changes frequency is complex, and also depends on crystal aging. So there is no easy way to correct for it in software. This is the single most important component of frequency drift.

The Local Temperatures are from field 3 from the tempstats log file.



Local Frequency/Temp

local freq temps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 12.630 12.638 12.659 12.935 13.207 13.221 13.255 0.548 0.583 0.200 12.946 ppm -0.08802 1.484
Temp /dev/nvme0n1 69.000 69.000 70.000 73.000 74.000 75.000 75.000 4.000 6.000 1.322 72.463 °C
Temp /dev/nvme1n1 51.000 51.000 52.000 53.000 55.000 56.000 59.000 3.000 5.000 1.092 53.101 °C
Temp /dev/sda 50.000 50.000 50.000 52.000 53.000 54.000 54.000 3.000 4.000 1.136 51.714 °C
Temp /dev/sdb 38.000 38.000 39.000 40.000 42.000 42.000 42.000 3.000 4.000 1.247 40.303 °C
Temp LM0 49.000 49.000 50.000 54.000 58.000 59.000 59.000 8.000 10.000 2.547 54.077 °C
Temp LM1 42.500 42.750 43.250 45.125 49.250 51.625 56.375 6.000 8.875 1.912 45.288 °C
Temp LM10 25.000 25.000 25.000 25.000 25.000 25.000 25.000 0.000 0.000 0.000 25.000 °C
Temp LM11 63.000 63.000 63.000 64.000 65.000 65.000 66.000 2.000 2.000 0.781 64.143 °C
Temp LM12 15.000 16.000 18.000 23.000 27.000 31.000 33.000 9.000 15.000 2.731 23.153 °C
Temp LM13 25.000 25.000 25.000 25.000 25.000 25.000 26.000 0.000 0.000 0.083 25.007 °C
Temp LM14 46.000 47.000 47.000 48.000 49.000 49.000 49.000 2.000 2.000 0.853 47.990 °C
Temp LM15 37.000 37.000 38.000 39.000 41.000 41.000 45.000 3.000 4.000 1.175 39.387 °C
Temp LM16 68.000 68.000 68.000 69.000 70.000 70.000 70.000 2.000 2.000 0.618 68.936 °C
Temp LM17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM2 42.000 42.250 42.750 45.000 47.500 50.000 53.500 4.750 7.750 1.598 45.021 °C
Temp LM20 42.500 42.750 43.250 45.125 49.375 51.625 56.375 6.125 8.875 1.878 45.286 °C
Temp LM21 68.000 68.250 68.250 69.000 70.000 70.000 70.000 1.750 1.750 0.601 69.101 °C
Temp LM22 39.000 39.000 39.000 40.000 42.000 42.000 42.000 3.000 3.000 1.125 40.411 °C
Temp LM23 68.850 68.850 69.850 72.850 73.850 73.850 74.850 4.000 5.000 1.306 72.338 °C
Temp LM3 50.000 50.000 50.000 52.000 53.000 54.000 54.000 3.000 4.000 1.133 51.697 °C
Temp LM4 50.850 50.850 51.850 52.850 54.850 55.850 58.850 3.000 5.000 1.070 52.944 °C
Temp LM5 50.850 50.850 51.850 52.850 54.850 55.850 58.850 3.000 5.000 1.075 52.941 °C
Temp LM6 58.850 58.850 59.850 60.850 61.850 69.850 76.850 2.000 11.000 1.765 60.885 °C
Temp LM7 50.850 50.850 51.850 52.850 54.850 55.850 58.850 3.000 5.000 1.082 52.979 °C
Temp LM8 47.000 47.000 47.000 48.000 49.000 49.000 49.000 2.000 2.000 0.841 47.997 °C
Temp LM9 38.000 38.000 38.000 39.500 41.000 41.500 42.000 3.000 3.500 1.030 39.664 °C

The frequency offsets and temperatures. Showing frequency offset (red, in parts per million, scale on right) and the temperatures.

These are field 4 (frequency) from the loopstats log file, and field 3 from the tempstats log file.



Local GPS

local gps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
nSats 5.000 5.000 5.000 5.000 5.000 5.000 16.000 0.000 0.000 0.118 5.001 nSat 92.93 8638
TDOP 0.600 0.680 0.740 1.010 1.660 2.040 5.740 0.920 1.360 0.303 1.087 2.079 14.41

Local GPS. The Time Dilution of Precision (TDOP) is plotted in blue. The number of visible satellites (nSat) is plotted in red.

TDOP is field 3, and nSats is field 4, from the gpsd log file. The gpsd log file is created by the ntploggps program.

TDOP is a dimensionless error factor. Smaller numbers are better. TDOP ranges from 1 (ideal), 2 to 5 (good), to greater than 20 (poor). Some GNSS receivers report TDOP less than one which is theoretically impossible.



Server Offsets

peer offsets plot

The offset of all refclocks and servers. This can be useful to see if offset changes are happening in a single clock or all clocks together.

Clock Offset is field 5 in the peerstats log file.



Server Offset 2001:470:e815::24 (pi4.rellim.com)

peer offset 2001:470:e815::24 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:470:e815::24 (pi4.rellim.com) -122.231 -111.533 -75.034 6.319 51.423 87.888 224.809 126.457 199.421 37.217 1.449 µs -0.2567 6.951

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2001:470:e815::8 (spidey.rellim.com)

peer offset 2001:470:e815::8 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:470:e815::8 (spidey.rellim.com) -102.850 -79.434 -38.758 17.618 65.397 105.261 164.560 104.155 184.695 32.488 16.314 µs -0.06355 5.323

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.1

peer offset 204.17.205.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.1 -0.159 -0.111 -0.013 0.491 1.094 1.176 1.196 1.107 1.287 0.376 0.481 ms 0.2271 1.803

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.30

peer offset 204.17.205.30 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.30 -111.137 -87.524 -46.653 -14.422 22.741 57.001 130.673 69.394 144.525 25.066 -13.485 µs 0.4883 8.117

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2405:fc00::1 (robusta.dcs1.biz)

peer offset 2405:fc00::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2405:fc00::1 (robusta.dcs1.biz) -0.178 0.800 1.436 1.899 2.465 2.613 2.810 1.029 1.813 0.369 1.908 ms -0.9624 7.728

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com)

peer offset 2604:a880:1:20::17:5001 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com) -0.254 0.083 1.044 1.351 1.744 2.231 2.244 0.700 2.148 0.267 1.352 ms -1.223 12.37

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::1 (time.cloudflare.com)

peer offset 2606:4700:f1::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::1 (time.cloudflare.com) 2.323 2.376 2.444 2.587 2.810 2.885 2.890 0.366 0.509 0.120 2.610 ms 0.2254 2.374

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::123 (time.cloudflare.com)

peer offset 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::123 (time.cloudflare.com) 0.967 1.022 2.326 2.628 2.961 3.323 3.400 0.635 2.301 0.287 2.615 ms -2.273 16.74

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset SHM(0)

peer offset SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset SHM(0) -160.482 -141.987 -139.809 -134.390 -130.242 -128.889 -126.645 9.567 13.098 2.955 -134.715 ms -0.6384 4.856

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Jitters

peer jitters plot

The RMS Jitter of all refclocks and servers. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:470:e815::24 (pi4.rellim.com)

peer jitter 2001:470:e815::24 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:470:e815::24 (pi4.rellim.com) 3.759 10.813 25.387 63.240 129.575 152.310 213.485 104.188 141.497 33.989 69.981 µs 0.5345 2.737

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:470:e815::8 (spidey.rellim.com)

peer jitter 2001:470:e815::8 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:470:e815::8 (spidey.rellim.com) 2.552 7.089 20.810 49.739 128.805 173.224 199.019 107.995 166.135 36.232 61.400 µs 1.109 3.722

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.1

peer jitter 204.17.205.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.1 6.032 10.674 21.811 43.700 131.466 163.393 182.055 109.655 152.719 37.882 57.991 µs 1.25 3.458

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.30

peer jitter 204.17.205.30 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.30 8.285 14.111 27.245 55.529 130.659 146.103 161.115 103.414 131.992 33.115 66.628 µs 0.7144 2.525

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2405:fc00::1 (robusta.dcs1.biz)

peer jitter 2405:fc00::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2405:fc00::1 (robusta.dcs1.biz) 0.160 0.193 0.234 0.592 3.546 11.828 12.148 3.312 11.635 1.625 1.112 ms 4.503 27.7

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com)

peer jitter 2604:a880:1:20::17:5001 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.097 0.141 0.243 0.610 2.028 3.859 8.431 1.785 3.718 0.789 0.843 ms 4.47 34.91

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::1 (time.cloudflare.com)

peer jitter 2606:4700:f1::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::1 (time.cloudflare.com) 0.125 0.141 0.204 0.446 1.054 1.400 1.833 0.850 1.258 0.272 0.504 ms 1.846 7.832

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::123 (time.cloudflare.com)

peer jitter 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 0.158 0.209 0.257 0.565 1.779 2.079 2.858 1.522 1.871 0.502 0.744 ms 1.499 4.954

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter SHM(0)

peer jitter SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter SHM(0) 0.064 0.296 0.423 1.029 2.574 3.680 18.505 2.151 3.384 0.936 1.240 ms 6.279 81.61

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Summary


Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 12.630 12.638 12.659 12.935 13.207 13.221 13.255 0.548 0.583 0.200 12.946 ppm -0.08802 1.484
Local Clock Time Offset -92.157 -69.610 -47.338 -0.416 37.546 65.556 139.937 84.884 135.166 25.580 -2.397 µs 0.4038 7.022
Local RMS Frequency Jitter 4.068 4.552 5.475 10.195 25.936 48.160 62.961 20.461 43.608 8.166 12.333 ppb 3.012 14.19
Local RMS Time Jitter 8.331 9.004 10.781 21.656 43.191 61.788 68.015 32.410 52.784 10.434 24.131 µs 1.112 4.639
Server Jitter 2001:470:e815::24 (pi4.rellim.com) 3.759 10.813 25.387 63.240 129.575 152.310 213.485 104.188 141.497 33.989 69.981 µs 0.5345 2.737
Server Jitter 2001:470:e815::8 (spidey.rellim.com) 2.552 7.089 20.810 49.739 128.805 173.224 199.019 107.995 166.135 36.232 61.400 µs 1.109 3.722
Server Jitter 204.17.205.1 6.032 10.674 21.811 43.700 131.466 163.393 182.055 109.655 152.719 37.882 57.991 µs 1.25 3.458
Server Jitter 204.17.205.30 8.285 14.111 27.245 55.529 130.659 146.103 161.115 103.414 131.992 33.115 66.628 µs 0.7144 2.525
Server Jitter 2405:fc00::1 (robusta.dcs1.biz) 0.160 0.193 0.234 0.592 3.546 11.828 12.148 3.312 11.635 1.625 1.112 ms 4.503 27.7
Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.097 0.141 0.243 0.610 2.028 3.859 8.431 1.785 3.718 0.789 0.843 ms 4.47 34.91
Server Jitter 2606:4700:f1::1 (time.cloudflare.com) 0.125 0.141 0.204 0.446 1.054 1.400 1.833 0.850 1.258 0.272 0.504 ms 1.846 7.832
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 0.158 0.209 0.257 0.565 1.779 2.079 2.858 1.522 1.871 0.502 0.744 ms 1.499 4.954
Server Jitter SHM(0) 0.064 0.296 0.423 1.029 2.574 3.680 18.505 2.151 3.384 0.936 1.240 ms 6.279 81.61
Server Offset 2001:470:e815::24 (pi4.rellim.com) -122.231 -111.533 -75.034 6.319 51.423 87.888 224.809 126.457 199.421 37.217 1.449 µs -0.2567 6.951
Server Offset 2001:470:e815::8 (spidey.rellim.com) -102.850 -79.434 -38.758 17.618 65.397 105.261 164.560 104.155 184.695 32.488 16.314 µs -0.06355 5.323
Server Offset 204.17.205.1 -0.159 -0.111 -0.013 0.491 1.094 1.176 1.196 1.107 1.287 0.376 0.481 ms 0.2271 1.803
Server Offset 204.17.205.30 -111.137 -87.524 -46.653 -14.422 22.741 57.001 130.673 69.394 144.525 25.066 -13.485 µs 0.4883 8.117
Server Offset 2405:fc00::1 (robusta.dcs1.biz) -0.178 0.800 1.436 1.899 2.465 2.613 2.810 1.029 1.813 0.369 1.908 ms -0.9624 7.728
Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com) -0.254 0.083 1.044 1.351 1.744 2.231 2.244 0.700 2.148 0.267 1.352 ms -1.223 12.37
Server Offset 2606:4700:f1::1 (time.cloudflare.com) 2.323 2.376 2.444 2.587 2.810 2.885 2.890 0.366 0.509 0.120 2.610 ms 0.2254 2.374
Server Offset 2606:4700:f1::123 (time.cloudflare.com) 0.967 1.022 2.326 2.628 2.961 3.323 3.400 0.635 2.301 0.287 2.615 ms -2.273 16.74
Server Offset SHM(0) -160.482 -141.987 -139.809 -134.390 -130.242 -128.889 -126.645 9.567 13.098 2.955 -134.715 ms -0.6384 4.856
TDOP 0.600 0.680 0.740 1.010 1.660 2.040 5.740 0.920 1.360 0.303 1.087 2.079 14.41
Temp /dev/nvme0n1 69.000 69.000 70.000 73.000 74.000 75.000 75.000 4.000 6.000 1.322 72.463 °C
Temp /dev/nvme1n1 51.000 51.000 52.000 53.000 55.000 56.000 59.000 3.000 5.000 1.092 53.101 °C
Temp /dev/sda 50.000 50.000 50.000 52.000 53.000 54.000 54.000 3.000 4.000 1.136 51.714 °C
Temp /dev/sdb 38.000 38.000 39.000 40.000 42.000 42.000 42.000 3.000 4.000 1.247 40.303 °C
Temp LM0 49.000 49.000 50.000 54.000 58.000 59.000 59.000 8.000 10.000 2.547 54.077 °C
Temp LM1 42.500 42.750 43.250 45.125 49.250 51.625 56.375 6.000 8.875 1.912 45.288 °C
Temp LM10 25.000 25.000 25.000 25.000 25.000 25.000 25.000 0.000 0.000 0.000 25.000 °C
Temp LM11 63.000 63.000 63.000 64.000 65.000 65.000 66.000 2.000 2.000 0.781 64.143 °C
Temp LM12 15.000 16.000 18.000 23.000 27.000 31.000 33.000 9.000 15.000 2.731 23.153 °C
Temp LM13 25.000 25.000 25.000 25.000 25.000 25.000 26.000 0.000 0.000 0.083 25.007 °C
Temp LM14 46.000 47.000 47.000 48.000 49.000 49.000 49.000 2.000 2.000 0.853 47.990 °C
Temp LM15 37.000 37.000 38.000 39.000 41.000 41.000 45.000 3.000 4.000 1.175 39.387 °C
Temp LM16 68.000 68.000 68.000 69.000 70.000 70.000 70.000 2.000 2.000 0.618 68.936 °C
Temp LM17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM2 42.000 42.250 42.750 45.000 47.500 50.000 53.500 4.750 7.750 1.598 45.021 °C
Temp LM20 42.500 42.750 43.250 45.125 49.375 51.625 56.375 6.125 8.875 1.878 45.286 °C
Temp LM21 68.000 68.250 68.250 69.000 70.000 70.000 70.000 1.750 1.750 0.601 69.101 °C
Temp LM22 39.000 39.000 39.000 40.000 42.000 42.000 42.000 3.000 3.000 1.125 40.411 °C
Temp LM23 68.850 68.850 69.850 72.850 73.850 73.850 74.850 4.000 5.000 1.306 72.338 °C
Temp LM3 50.000 50.000 50.000 52.000 53.000 54.000 54.000 3.000 4.000 1.133 51.697 °C
Temp LM4 50.850 50.850 51.850 52.850 54.850 55.850 58.850 3.000 5.000 1.070 52.944 °C
Temp LM5 50.850 50.850 51.850 52.850 54.850 55.850 58.850 3.000 5.000 1.075 52.941 °C
Temp LM6 58.850 58.850 59.850 60.850 61.850 69.850 76.850 2.000 11.000 1.765 60.885 °C
Temp LM7 50.850 50.850 51.850 52.850 54.850 55.850 58.850 3.000 5.000 1.082 52.979 °C
Temp LM8 47.000 47.000 47.000 48.000 49.000 49.000 49.000 2.000 2.000 0.841 47.997 °C
Temp LM9 38.000 38.000 38.000 39.500 41.000 41.500 42.000 3.000 3.500 1.030 39.664 °C
nSats 5.000 5.000 5.000 5.000 5.000 5.000 16.000 0.000 0.000 0.118 5.001 nSat 92.93 8638
Summary as CSV file


This server:

Motherboard:
OS: Gentoo unstable
GPS/PPS server: gpsd
NTP server: NTPsec
../ntp.conf

Notes:

Feb 21 03:28:57 UTC 2019: New install

Glossary:

frequency offset:
The difference between the ntpd calculated frequency and the local system clock frequency (usually in parts per million, ppm)
jitter, dispersion:
The short term change in a value. NTP measures Local Time Jitter, Refclock Jitter, and Server Jitter in seconds. Local Frequency Jitter is in ppm or ppb.
ms, millisecond:
One thousandth of a second = 0.001 seconds, 1e-3 seconds
mu, mean:
The arithmetic mean: the sum of all the values divided by the number of values. The formula for mu is: "mu = (∑xi) / N". Where xi denotes the data points and N is the number of data points.
ns, nanosecond:
One billionth of a second, also one thousandth of a microsecond, 0.000000001 seconds and 1e-9 seconds.
percentile:
The value below which a given percentage of values fall.
ppb, parts per billion:
Ratio between two values. These following are all the same: 1 ppb, one in one billion, 1/1,000,000,000, 0.000,000,001, 1e-9 and 0.000,000,1%
ppm, parts per million:
Ratio between two values. These following are all the same: 1 ppm, one in one million, 1/1,000,000, 0.000,001, and 0.000,1%
‰, parts per thousand:
Ratio between two values. These following are all the same: 1 ‰. one in one thousand, 1/1,000, 0.001, and 0.1%
refclock:
Reference clock, a local GPS module or other local source of time.
remote clock:
Any clock reached over the network, LAN or WAN. Also called a peer or server.
time offset:
The difference between the ntpd calculated time and the local system clock's time. Also called phase offset.
σ, sigma:
Sigma denotes the standard deviation (SD) and is centered on the arithmetic mean of the data set. The SD is simply the square root of the variance of the data set. Two sigma is simply twice the standard deviation. Three sigma is three times sigma. Smaller is better.
The formula for sigma is: "σ = √[ ∑(xi-mu)^2 / N ]". Where xi denotes the data points and N is the number of data points.
Skewness, Skew:
The skewness of a random variable X is the third standardized moment and is a dimension-less ratio. ntpviz uses the FIsher-Pearson moment of skewness. There are other different ways to calculate Skewness Wikipedia describes Skewness best: "The qualitative interpretation of the skew is complicated and unintuitive."
A normal distribution has a skewness of zero.
Kurtosis, Kurt:
The kurtosis of a random variable X is the fourth standardized moment and is a dimension-less ratio. ntpviz uses standard Kurtosis. There are other different ways to calculate Kurtosis.
A normal distribution has a Kurtosis of three. NIST describes a kurtosis over three as "heavy tailed" and one under three as "light tailed".
upstream clock:
Any server or reference clock used as a source of time.
µs, us, microsecond:
One millionth of a second, also one thousandth of a millisecond, 0.000,001 seconds, and 1e-6 seconds.



This page autogenerated by ntpviz, part of the NTPsec project
html 5    Valid CSS!