NTPsec

Kong

Report generated: Tue Feb 17 08:49:00 2026 UTC
Start Time: Mon Feb 16 08:49:00 2026 UTC
End Time: Tue Feb 17 08:49:00 2026 UTC
Report Period: 1.0 days
Warning: plots clipped

Daily stats   Weekly stats   Live GNSS Data   24 Hour Scatter Plots: ( )

Local Clock Time/Frequency Offsets

local offset plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Time Offset -1.631 -1.631 -1.355 -0.089 1.252 1.472 1.472 2.607 3.103 0.765 -0.125 ms 0.2476 2.091
Local Clock Frequency Offset 12.208 12.208 12.259 12.461 12.708 12.738 12.738 0.449 0.530 0.148 12.473 ppm 0.07329 1.901

The time and frequency offsets between the ntpd calculated time and the local system clock. Showing frequency offset (red, in parts per million, scale on right) and the time offset (blue, in μs, scale on left). Quick changes in time offset will lead to larger frequency offsets.

These are fields 3 (time) and 4 (frequency) from the loopstats log file.



Local RMS Time Jitter

local jitter plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Time Jitter 176.846 176.846 194.720 417.405 725.894 822.312 822.312 531.174 645.466 141.395 413.389 µs 0.6714 3.722

The RMS Jitter of the local clock offset. In other words, how fast the local clock offset is changing.

Lower is better. An ideal system would be a horizontal line at 0μs.

RMS jitter is field 5 in the loopstats log file.



Local RMS Frequency Jitter

local stability plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Frequency Jitter 36.724 36.724 40.905 54.224 80.826 90.580 90.580 39.921 53.856 13.887 57.520 ppb 0.5065 2.069

The RMS Frequency Jitter (aka wander) of the local clock's frequency. In other words, how fast the local clock changes frequency.

Lower is better. An ideal clock would be a horizontal line at 0ppm.

RMS Frequency Jitter is field 6 in the loopstats log file.



Local Clock Time Offset Histogram

local offset histogram plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Offset -1.631 -1.631 -1.355 -0.089 1.252 1.472 1.472 2.607 3.103 0.765 -0.125 ms 0.2476 2.091

The clock offsets of the local clock as a histogram.

The Local Clock Offset is field 3 from the loopstats log file.



Local Temperatures

local temps plot

Local temperatures. These will be site-specific depending upon what temperature sensors you collect data from. Temperature changes affect the local clock crystal frequency and stability. The math of how temperature changes frequency is complex, and also depends on crystal aging. So there is no easy way to correct for it in software. This is the single most important component of frequency drift.

The Local Temperatures are from field 3 from the tempstats log file.



Local Frequency/Temp

local freq temps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 12.208 12.208 12.259 12.461 12.708 12.738 12.738 0.449 0.530 0.148 12.473 ppm 0.07329 1.901
Temp /dev/nvme0n1 60.000 60.000 64.000 70.000 72.000 72.000 73.000 8.000 12.000 2.432 69.497 °C
Temp /dev/nvme1n1 46.000 46.000 49.000 53.000 57.000 57.000 59.000 8.000 11.000 2.249 53.101 °C
Temp /dev/sda 45.000 45.000 45.000 47.000 49.000 49.000 49.000 4.000 4.000 1.399 46.965 °C
Temp /dev/sdb 33.000 33.000 33.000 35.000 37.000 38.000 38.000 4.000 5.000 1.422 35.226 °C
Temp LM0 48.000 49.000 50.000 54.000 58.000 59.000 60.000 8.000 10.000 2.488 53.983 °C
Temp LM1 37.750 37.875 38.500 42.250 46.500 56.250 62.125 8.000 18.375 2.918 42.311 °C
Temp LM10 25.000 25.000 25.000 25.000 25.000 26.000 26.000 0.000 1.000 0.131 25.017 °C
Temp LM11 72.000 72.000 76.000 79.000 80.000 81.000 81.000 4.000 9.000 1.461 78.889 °C
Temp LM12 3.000 7.000 17.000 22.000 29.000 34.000 36.000 12.000 27.000 3.959 22.045 °C
Temp LM13 25.000 25.000 25.000 25.000 25.000 25.000 25.000 0.000 0.000 0.000 25.000 °C
Temp LM14 38.000 38.000 39.000 40.000 41.000 42.000 42.000 2.000 4.000 0.954 40.007 °C
Temp LM15 34.000 34.000 34.000 36.000 39.000 45.000 51.000 5.000 11.000 1.734 36.264 °C
Temp LM16 80.000 80.500 84.500 89.500 91.500 92.000 92.000 7.000 11.500 2.037 89.111 °C
Temp LM17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM2 37.750 37.750 38.750 41.500 46.000 58.750 62.000 7.250 21.000 2.950 42.113 °C
Temp LM20 37.750 37.875 38.500 42.250 46.500 56.250 62.125 8.000 18.375 2.904 42.303 °C
Temp LM21 80.000 80.500 84.500 89.625 91.500 92.000 92.250 7.000 11.500 2.050 89.246 °C
Temp LM22 33.000 33.000 33.000 35.000 37.000 38.000 38.000 4.000 5.000 1.389 35.330 °C
Temp LM23 59.850 59.850 63.850 69.850 71.850 71.850 71.850 8.000 12.000 2.445 69.388 °C
Temp LM3 44.000 45.000 45.000 47.000 49.000 49.000 49.000 4.000 4.000 1.408 46.944 °C
Temp LM4 45.850 45.850 48.850 52.850 56.850 56.850 58.850 8.000 11.000 2.242 52.951 °C
Temp LM5 45.850 45.850 48.850 52.850 55.850 56.850 58.850 7.000 11.000 2.237 52.954 °C
Temp LM6 53.850 54.850 57.850 64.850 68.850 69.850 75.850 11.000 15.000 3.987 63.652 °C
Temp LM7 45.850 45.850 48.850 52.850 56.850 56.850 58.850 8.000 11.000 2.238 52.978 °C
Temp LM8 38.000 38.000 39.000 40.000 41.000 42.000 42.000 2.000 4.000 0.954 40.000 °C
Temp LM9 34.000 34.000 34.500 36.500 38.500 40.000 43.500 4.000 6.000 1.199 36.420 °C

The frequency offsets and temperatures. Showing frequency offset (red, in parts per million, scale on right) and the temperatures.

These are field 4 (frequency) from the loopstats log file, and field 3 from the tempstats log file.



Local GPS

local gps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
nSats 5.000 7.000 8.000 11.000 13.000 14.000 15.000 5.000 7.000 1.549 11.001 nSat -0.3725 2.81
TDOP 0.750 0.840 0.930 1.380 2.100 2.660 5.200 1.170 1.820 0.372 1.409 1.631 9.881

Local GPS. The Time Dilution of Precision (TDOP) is plotted in blue. The number of visible satellites (nSat) is plotted in red.

TDOP is field 3, and nSats is field 4, from the gpsd log file. The gpsd log file is created by the ntploggps program.

TDOP is a dimensionless error factor. Smaller numbers are better. TDOP ranges from 1 (ideal), 2 to 5 (good), to greater than 20 (poor). Some GNSS receivers report TDOP less than one which is theoretically impossible.



Server Offsets

peer offsets plot

The offset of all refclocks and servers. This can be useful to see if offset changes are happening in a single clock or all clocks together.

Clock Offset is field 5 in the peerstats log file.



Server Offset 2001:470:e815::24 (pi4.rellim.com)

peer offset 2001:470:e815::24 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:470:e815::24 (pi4.rellim.com) -36.520 -24.500 -14.738 -0.251 1.711 4.666 9.172 16.449 29.166 5.468 -1.832 ms -2.883 12.66

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2001:470:e815::8 (spidey.rellim.com)

peer offset 2001:470:e815::8 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:470:e815::8 (spidey.rellim.com) -0.857 -0.824 -0.776 0.390 1.403 1.864 1.999 2.179 2.688 0.688 0.333 ms -0.03525 2.227

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.1

peer offset 204.17.205.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.1 -1.370 -1.317 -0.945 0.753 2.101 2.348 2.406 3.046 3.665 0.903 0.535 ms -0.1999 2.278

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.30

peer offset 204.17.205.30 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.30 -1.533 -1.533 -1.325 -0.252 1.252 1.522 1.522 2.577 3.055 0.758 -0.204 ms 0.3518 2.143

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2405:fc00::1 (robusta.dcs1.biz)

peer offset 2405:fc00::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2405:fc00::1 (robusta.dcs1.biz) -0.928 -0.928 -0.053 2.024 4.811 5.418 5.418 4.864 6.347 1.315 2.017 ms 0.3714 3.135

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com)

peer offset 2604:a880:1:20::17:5001 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com) -0.750 -0.750 -0.534 1.605 3.874 3.938 3.938 4.408 4.688 1.163 1.693 ms -0.03002 2.485

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::1 (time.cloudflare.com)

peer offset 2606:4700:f1::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::1 (time.cloudflare.com) -0.164 -0.164 -0.062 2.008 4.337 5.341 5.341 4.399 5.505 1.261 1.962 ms 0.5657 3.242

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::123 (time.cloudflare.com)

peer offset 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::123 (time.cloudflare.com) 0.258 0.258 0.258 1.659 4.106 4.106 4.106 3.848 3.848 1.046 1.842 ms 0.6665 3.173

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset SHM(0)

peer offset SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset SHM(0) -179.197 -146.708 -143.721 -129.660 -123.615 -121.208 -118.935 20.106 25.500 6.011 -131.006 ms -1.24 5.689

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Jitters

peer jitters plot

The RMS Jitter of all refclocks and servers. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:470:e815::24 (pi4.rellim.com)

peer jitter 2001:470:e815::24 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:470:e815::24 (pi4.rellim.com) 0.012 0.074 0.214 5.012 17.847 56.503 94.971 17.633 56.429 8.713 6.718 ms 5.183 41.97

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:470:e815::8 (spidey.rellim.com)

peer jitter 2001:470:e815::8 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:470:e815::8 (spidey.rellim.com) 1.259 3.171 7.783 48.893 129.699 164.707 190.574 121.916 161.536 36.941 56.434 µs 0.961 3.663

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.1

peer jitter 204.17.205.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.1 1.894 5.339 9.612 39.880 187.460 243.271 262.978 177.848 237.932 57.445 64.629 µs 1.286 3.866

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.30

peer jitter 204.17.205.30 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.30 0.090 0.090 0.116 0.455 1.507 1.757 1.757 1.391 1.667 0.401 0.563 ms 1.016 3.392

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2405:fc00::1 (robusta.dcs1.biz)

peer jitter 2405:fc00::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2405:fc00::1 (robusta.dcs1.biz) 0.614 0.614 0.812 1.336 3.017 3.288 3.288 2.205 2.674 0.597 1.486 ms 1.102 3.97

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com)

peer jitter 2604:a880:1:20::17:5001 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.753 0.753 0.850 1.439 2.413 2.713 2.713 1.563 1.960 0.463 1.493 ms 0.5882 2.684

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::1 (time.cloudflare.com)

peer jitter 2606:4700:f1::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::1 (time.cloudflare.com) 0.472 0.472 0.478 1.588 3.387 4.112 4.112 2.909 3.639 0.849 1.733 ms 1.022 3.839

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::123 (time.cloudflare.com)

peer jitter 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 1.448 1.448 1.448 3.040 3.937 3.937 3.937 2.489 2.489 0.890 2.800 ms -0.4598 1.635

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter SHM(0)

peer jitter SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter SHM(0) 0.000 0.294 0.429 1.655 10.562 13.505 46.915 10.134 13.211 3.747 3.755 ms 1.696 11.36

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Summary


Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 12.208 12.208 12.259 12.461 12.708 12.738 12.738 0.449 0.530 0.148 12.473 ppm 0.07329 1.901
Local Clock Time Offset -1.631 -1.631 -1.355 -0.089 1.252 1.472 1.472 2.607 3.103 0.765 -0.125 ms 0.2476 2.091
Local RMS Frequency Jitter 36.724 36.724 40.905 54.224 80.826 90.580 90.580 39.921 53.856 13.887 57.520 ppb 0.5065 2.069
Local RMS Time Jitter 176.846 176.846 194.720 417.405 725.894 822.312 822.312 531.174 645.466 141.395 413.389 µs 0.6714 3.722
Server Jitter 2001:470:e815::24 (pi4.rellim.com) 0.012 0.074 0.214 5.012 17.847 56.503 94.971 17.633 56.429 8.713 6.718 ms 5.183 41.97
Server Jitter 2001:470:e815::8 (spidey.rellim.com) 1.259 3.171 7.783 48.893 129.699 164.707 190.574 121.916 161.536 36.941 56.434 µs 0.961 3.663
Server Jitter 204.17.205.1 1.894 5.339 9.612 39.880 187.460 243.271 262.978 177.848 237.932 57.445 64.629 µs 1.286 3.866
Server Jitter 204.17.205.30 0.090 0.090 0.116 0.455 1.507 1.757 1.757 1.391 1.667 0.401 0.563 ms 1.016 3.392
Server Jitter 2405:fc00::1 (robusta.dcs1.biz) 0.614 0.614 0.812 1.336 3.017 3.288 3.288 2.205 2.674 0.597 1.486 ms 1.102 3.97
Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.753 0.753 0.850 1.439 2.413 2.713 2.713 1.563 1.960 0.463 1.493 ms 0.5882 2.684
Server Jitter 2606:4700:f1::1 (time.cloudflare.com) 0.472 0.472 0.478 1.588 3.387 4.112 4.112 2.909 3.639 0.849 1.733 ms 1.022 3.839
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 1.448 1.448 1.448 3.040 3.937 3.937 3.937 2.489 2.489 0.890 2.800 ms -0.4598 1.635
Server Jitter SHM(0) 0.000 0.294 0.429 1.655 10.562 13.505 46.915 10.134 13.211 3.747 3.755 ms 1.696 11.36
Server Offset 2001:470:e815::24 (pi4.rellim.com) -36.520 -24.500 -14.738 -0.251 1.711 4.666 9.172 16.449 29.166 5.468 -1.832 ms -2.883 12.66
Server Offset 2001:470:e815::8 (spidey.rellim.com) -0.857 -0.824 -0.776 0.390 1.403 1.864 1.999 2.179 2.688 0.688 0.333 ms -0.03525 2.227
Server Offset 204.17.205.1 -1.370 -1.317 -0.945 0.753 2.101 2.348 2.406 3.046 3.665 0.903 0.535 ms -0.1999 2.278
Server Offset 204.17.205.30 -1.533 -1.533 -1.325 -0.252 1.252 1.522 1.522 2.577 3.055 0.758 -0.204 ms 0.3518 2.143
Server Offset 2405:fc00::1 (robusta.dcs1.biz) -0.928 -0.928 -0.053 2.024 4.811 5.418 5.418 4.864 6.347 1.315 2.017 ms 0.3714 3.135
Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com) -0.750 -0.750 -0.534 1.605 3.874 3.938 3.938 4.408 4.688 1.163 1.693 ms -0.03002 2.485
Server Offset 2606:4700:f1::1 (time.cloudflare.com) -0.164 -0.164 -0.062 2.008 4.337 5.341 5.341 4.399 5.505 1.261 1.962 ms 0.5657 3.242
Server Offset 2606:4700:f1::123 (time.cloudflare.com) 0.258 0.258 0.258 1.659 4.106 4.106 4.106 3.848 3.848 1.046 1.842 ms 0.6665 3.173
Server Offset SHM(0) -179.197 -146.708 -143.721 -129.660 -123.615 -121.208 -118.935 20.106 25.500 6.011 -131.006 ms -1.24 5.689
TDOP 0.750 0.840 0.930 1.380 2.100 2.660 5.200 1.170 1.820 0.372 1.409 1.631 9.881
Temp /dev/nvme0n1 60.000 60.000 64.000 70.000 72.000 72.000 73.000 8.000 12.000 2.432 69.497 °C
Temp /dev/nvme1n1 46.000 46.000 49.000 53.000 57.000 57.000 59.000 8.000 11.000 2.249 53.101 °C
Temp /dev/sda 45.000 45.000 45.000 47.000 49.000 49.000 49.000 4.000 4.000 1.399 46.965 °C
Temp /dev/sdb 33.000 33.000 33.000 35.000 37.000 38.000 38.000 4.000 5.000 1.422 35.226 °C
Temp LM0 48.000 49.000 50.000 54.000 58.000 59.000 60.000 8.000 10.000 2.488 53.983 °C
Temp LM1 37.750 37.875 38.500 42.250 46.500 56.250 62.125 8.000 18.375 2.918 42.311 °C
Temp LM10 25.000 25.000 25.000 25.000 25.000 26.000 26.000 0.000 1.000 0.131 25.017 °C
Temp LM11 72.000 72.000 76.000 79.000 80.000 81.000 81.000 4.000 9.000 1.461 78.889 °C
Temp LM12 3.000 7.000 17.000 22.000 29.000 34.000 36.000 12.000 27.000 3.959 22.045 °C
Temp LM13 25.000 25.000 25.000 25.000 25.000 25.000 25.000 0.000 0.000 0.000 25.000 °C
Temp LM14 38.000 38.000 39.000 40.000 41.000 42.000 42.000 2.000 4.000 0.954 40.007 °C
Temp LM15 34.000 34.000 34.000 36.000 39.000 45.000 51.000 5.000 11.000 1.734 36.264 °C
Temp LM16 80.000 80.500 84.500 89.500 91.500 92.000 92.000 7.000 11.500 2.037 89.111 °C
Temp LM17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM2 37.750 37.750 38.750 41.500 46.000 58.750 62.000 7.250 21.000 2.950 42.113 °C
Temp LM20 37.750 37.875 38.500 42.250 46.500 56.250 62.125 8.000 18.375 2.904 42.303 °C
Temp LM21 80.000 80.500 84.500 89.625 91.500 92.000 92.250 7.000 11.500 2.050 89.246 °C
Temp LM22 33.000 33.000 33.000 35.000 37.000 38.000 38.000 4.000 5.000 1.389 35.330 °C
Temp LM23 59.850 59.850 63.850 69.850 71.850 71.850 71.850 8.000 12.000 2.445 69.388 °C
Temp LM3 44.000 45.000 45.000 47.000 49.000 49.000 49.000 4.000 4.000 1.408 46.944 °C
Temp LM4 45.850 45.850 48.850 52.850 56.850 56.850 58.850 8.000 11.000 2.242 52.951 °C
Temp LM5 45.850 45.850 48.850 52.850 55.850 56.850 58.850 7.000 11.000 2.237 52.954 °C
Temp LM6 53.850 54.850 57.850 64.850 68.850 69.850 75.850 11.000 15.000 3.987 63.652 °C
Temp LM7 45.850 45.850 48.850 52.850 56.850 56.850 58.850 8.000 11.000 2.238 52.978 °C
Temp LM8 38.000 38.000 39.000 40.000 41.000 42.000 42.000 2.000 4.000 0.954 40.000 °C
Temp LM9 34.000 34.000 34.500 36.500 38.500 40.000 43.500 4.000 6.000 1.199 36.420 °C
nSats 5.000 7.000 8.000 11.000 13.000 14.000 15.000 5.000 7.000 1.549 11.001 nSat -0.3725 2.81
Summary as CSV file


This server:

Motherboard:
OS: Gentoo unstable
GPS/PPS server: gpsd
NTP server: NTPsec
../ntp.conf

Notes:

Feb 21 03:28:57 UTC 2019: New install

Glossary:

frequency offset:
The difference between the ntpd calculated frequency and the local system clock frequency (usually in parts per million, ppm)
jitter, dispersion:
The short term change in a value. NTP measures Local Time Jitter, Refclock Jitter, and Server Jitter in seconds. Local Frequency Jitter is in ppm or ppb.
ms, millisecond:
One thousandth of a second = 0.001 seconds, 1e-3 seconds
mu, mean:
The arithmetic mean: the sum of all the values divided by the number of values. The formula for mu is: "mu = (∑xi) / N". Where xi denotes the data points and N is the number of data points.
ns, nanosecond:
One billionth of a second, also one thousandth of a microsecond, 0.000000001 seconds and 1e-9 seconds.
percentile:
The value below which a given percentage of values fall.
ppb, parts per billion:
Ratio between two values. These following are all the same: 1 ppb, one in one billion, 1/1,000,000,000, 0.000,000,001, 1e-9 and 0.000,000,1%
ppm, parts per million:
Ratio between two values. These following are all the same: 1 ppm, one in one million, 1/1,000,000, 0.000,001, and 0.000,1%
‰, parts per thousand:
Ratio between two values. These following are all the same: 1 ‰. one in one thousand, 1/1,000, 0.001, and 0.1%
refclock:
Reference clock, a local GPS module or other local source of time.
remote clock:
Any clock reached over the network, LAN or WAN. Also called a peer or server.
time offset:
The difference between the ntpd calculated time and the local system clock's time. Also called phase offset.
σ, sigma:
Sigma denotes the standard deviation (SD) and is centered on the arithmetic mean of the data set. The SD is simply the square root of the variance of the data set. Two sigma is simply twice the standard deviation. Three sigma is three times sigma. Smaller is better.
The formula for sigma is: "σ = √[ ∑(xi-mu)^2 / N ]". Where xi denotes the data points and N is the number of data points.
Skewness, Skew:
The skewness of a random variable X is the third standardized moment and is a dimension-less ratio. ntpviz uses the FIsher-Pearson moment of skewness. There are other different ways to calculate Skewness Wikipedia describes Skewness best: "The qualitative interpretation of the skew is complicated and unintuitive."
A normal distribution has a skewness of zero.
Kurtosis, Kurt:
The kurtosis of a random variable X is the fourth standardized moment and is a dimension-less ratio. ntpviz uses standard Kurtosis. There are other different ways to calculate Kurtosis.
A normal distribution has a Kurtosis of three. NIST describes a kurtosis over three as "heavy tailed" and one under three as "light tailed".
upstream clock:
Any server or reference clock used as a source of time.
µs, us, microsecond:
One millionth of a second, also one thousandth of a millisecond, 0.000,001 seconds, and 1e-6 seconds.



This page autogenerated by ntpviz, part of the NTPsec project
html 5    Valid CSS!