NTPsec

Kong

Report generated: Sat Jul 12 08:49:00 2025 UTC
Start Time: Fri Jul 11 08:49:00 2025 UTC
End Time: Sat Jul 12 08:49:00 2025 UTC
Report Period: 1.0 days
Warning: plots clipped

Daily stats   Weekly stats   Live GNSS Data   24 Hour Scatter Plots: ( )

Local Clock Time/Frequency Offsets

local offset plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Time Offset -248.766 -145.783 -76.884 -0.815 77.616 150.431 194.863 154.500 296.214 50.364 -1.281 µs -0.3246 7.306
Local Clock Frequency Offset 12.526 12.544 12.575 12.857 13.640 14.052 14.057 1.065 1.508 0.329 12.903 ppm 1.787 6.299

The time and frequency offsets between the ntpd calculated time and the local system clock. Showing frequency offset (red, in parts per million, scale on right) and the time offset (blue, in μs, scale on left). Quick changes in time offset will lead to larger frequency offsets.

These are fields 3 (time) and 4 (frequency) from the loopstats log file.



Local RMS Time Jitter

local jitter plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Time Jitter 15.287 17.945 21.027 34.051 49.875 64.380 73.073 28.848 46.435 9.095 34.538 µs 0.7307 4.27

The RMS Jitter of the local clock offset. In other words, how fast the local clock offset is changing.

Lower is better. An ideal system would be a horizontal line at 0μs.

RMS jitter is field 5 in the loopstats log file.



Local RMS Frequency Jitter

local stability plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Frequency Jitter 5.729 7.323 10.523 18.915 57.458 82.948 89.572 46.935 75.625 14.610 23.402 ppb 2.313 8.591

The RMS Frequency Jitter (aka wander) of the local clock's frequency. In other words, how fast the local clock changes frequency.

Lower is better. An ideal clock would be a horizontal line at 0ppm.

RMS Frequency Jitter is field 6 in the loopstats log file.



Local Clock Time Offset Histogram

local offset histogram plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Offset -248.766 -145.783 -76.884 -0.815 77.616 150.431 194.863 154.500 296.214 50.364 -1.281 µs -0.3246 7.306

The clock offsets of the local clock as a histogram.

The Local Clock Offset is field 3 from the loopstats log file.



Local Temperatures

local temps plot

Local temperatures. These will be site-specific depending upon what temperature sensors you collect data from. Temperature changes affect the local clock crystal frequency and stability. The math of how temperature changes frequency is complex, and also depends on crystal aging. So there is no easy way to correct for it in software. This is the single most important component of frequency drift.

The Local Temperatures are from field 3 from the tempstats log file.



Local Frequency/Temp

local freq temps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 12.526 12.544 12.575 12.857 13.640 14.052 14.057 1.065 1.508 0.329 12.903 ppm 1.787 6.299
Temp /dev/nvme0n1 64.000 65.000 68.000 73.000 74.000 74.000 75.000 6.000 9.000 1.809 71.993 °C
Temp /dev/nvme1n1 50.000 51.000 51.000 53.000 55.000 58.000 59.000 4.000 7.000 1.185 52.788 °C
Temp /dev/sda 49.000 49.000 50.000 51.000 52.000 53.000 53.000 2.000 4.000 0.762 51.219 °C
Temp /dev/sdb 38.000 38.000 39.000 40.000 42.000 42.000 42.000 3.000 4.000 0.930 39.674 °C
Temp LM0 49.000 49.000 50.000 55.000 58.000 59.000 59.000 8.000 10.000 2.631 54.490 °C
Temp LM1 41.750 41.750 41.875 43.250 68.375 70.500 72.375 26.500 28.750 6.614 45.276 °C
Temp LM10 25.000 25.000 25.000 25.000 25.000 25.000 25.000 0.000 0.000 0.000 25.000 °C
Temp LM11 63.000 63.000 63.000 64.000 64.000 65.000 65.000 1.000 2.000 0.526 63.649 °C
Temp LM12 4.000 5.000 8.000 24.000 29.000 36.000 38.000 21.000 31.000 5.165 23.333 °C
Temp LM13 25.000 25.000 25.000 25.000 25.000 25.000 25.000 0.000 0.000 0.000 25.000 °C
Temp LM14 46.000 46.000 46.000 48.000 48.000 48.000 48.000 2.000 2.000 0.680 47.444 °C
Temp LM15 37.000 37.000 37.000 38.000 57.000 59.000 61.000 20.000 22.000 4.889 39.698 °C
Temp LM16 67.500 68.000 68.000 68.500 69.000 69.500 69.500 1.000 1.500 0.410 68.479 °C
Temp LM17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM2 41.500 41.750 42.000 43.500 63.750 70.500 73.000 21.750 28.750 6.202 45.510 °C
Temp LM20 41.000 41.750 41.875 43.250 68.000 70.500 72.375 26.125 28.750 6.607 45.273 °C
Temp LM21 67.750 68.000 68.000 68.750 69.250 69.500 69.500 1.250 1.500 0.387 68.639 °C
Temp LM22 39.000 39.000 39.000 40.000 42.000 42.000 42.000 3.000 3.000 0.895 39.840 °C
Temp LM23 63.850 65.850 67.850 72.850 73.850 73.850 74.850 6.000 8.000 1.805 71.843 °C
Temp LM3 49.000 49.000 50.000 51.000 52.000 53.000 53.000 2.000 4.000 0.784 51.219 °C
Temp LM4 49.850 50.850 50.850 52.850 54.850 57.850 58.850 4.000 7.000 1.177 52.607 °C
Temp LM5 49.850 50.850 50.850 52.850 54.850 57.850 58.850 4.000 7.000 1.187 52.642 °C
Temp LM6 57.850 57.850 58.850 59.850 66.850 74.850 75.850 8.000 17.000 2.564 60.864 °C
Temp LM7 49.850 50.850 51.850 52.850 54.850 57.850 58.850 3.000 7.000 1.181 52.642 °C
Temp LM8 46.000 46.000 46.000 48.000 48.000 48.000 48.000 2.000 2.000 0.675 47.448 °C
Temp LM9 37.500 37.500 37.500 38.500 45.500 49.000 49.000 8.000 11.500 2.539 39.280 °C

The frequency offsets and temperatures. Showing frequency offset (red, in parts per million, scale on right) and the temperatures.

These are field 4 (frequency) from the loopstats log file, and field 3 from the tempstats log file.



Local GPS

local gps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
nSats 5.000 5.000 5.000 5.000 5.000 5.000 5.000 0.000 0.000 0.000 5.000 nSat nan nan
TDOP 0.610 0.700 0.780 1.100 1.690 2.370 3.610 0.910 1.670 0.331 1.161 1.769 8.476

Local GPS. The Time Dilution of Precision (TDOP) is plotted in blue. The number of visible satellites (nSat) is plotted in red.

TDOP is field 3, and nSats is field 4, from the gpsd log file. The gpsd log file is created by the ntploggps program.

TDOP is a dimensionless error factor. Smaller numbers are better. TDOP ranges from 1 (ideal), 2 to 5 (good), to greater than 20 (poor). Some GNSS receivers report TDOP less than one which is theoretically impossible.



Server Offsets

peer offsets plot

The offset of all refclocks and servers. This can be useful to see if offset changes are happening in a single clock or all clocks together.

Clock Offset is field 5 in the peerstats log file.



Server Offset 2001:470:e815::24 (pi4.rellim.com)

peer offset 2001:470:e815::24 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:470:e815::24 (pi4.rellim.com) -305.891 -174.826 -104.737 3.404 86.120 229.814 295.270 190.857 404.640 64.895 -0.797 µs 0.07091 7.284

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2001:470:e815::8 (spidey.rellim.com)

peer offset 2001:470:e815::8 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:470:e815::8 (spidey.rellim.com) -250.631 -98.643 -40.743 31.444 113.389 178.322 210.436 154.132 276.965 50.753 32.872 µs -0.2545 6.501

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.1

peer offset 204.17.205.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.1 -1.490 -1.443 -0.458 0.662 0.915 1.005 1.083 1.373 2.448 0.494 0.454 ms -1.86 6.874

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.30

peer offset 204.17.205.30 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.30 -214.054 -193.880 -102.557 -14.215 55.677 96.087 110.039 158.234 289.967 48.440 -16.040 µs -0.5349 4.895

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2405:fc00::1 (robusta.dcs1.biz)

peer offset 2405:fc00::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2405:fc00::1 (robusta.dcs1.biz) -152.180 -141.195 -105.932 -36.394 2.426 2.709 2.757 108.358 143.904 38.190 -30.147 ms -1.053 3.362

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com)

peer offset 2604:a880:1:20::17:5001 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.588 0.754 0.916 1.254 1.658 1.923 1.972 0.742 1.169 0.224 1.264 ms 0.1675 3.714

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::1 (time.cloudflare.com)

peer offset 2606:4700:f1::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::1 (time.cloudflare.com) 2.089 2.143 2.225 2.467 2.712 2.836 2.923 0.487 0.693 0.140 2.470 ms 0.1585 3.472

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::123 (time.cloudflare.com)

peer offset 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::123 (time.cloudflare.com) 2.148 2.148 2.283 2.476 2.676 2.758 2.758 0.393 0.610 0.120 2.471 ms 0.09679 2.892

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset SHM(0)

peer offset SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset SHM(0) -162.943 -140.746 -138.107 -133.115 -129.053 -127.663 -125.828 9.054 13.083 2.790 -133.213 ms -0.7315 6.407

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Jitters

peer jitters plot

The RMS Jitter of all refclocks and servers. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:470:e815::24 (pi4.rellim.com)

peer jitter 2001:470:e815::24 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:470:e815::24 (pi4.rellim.com) 3.232 5.361 14.377 72.399 141.475 168.231 181.079 127.098 162.870 37.712 74.399 µs 0.2845 2.571

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:470:e815::8 (spidey.rellim.com)

peer jitter 2001:470:e815::8 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:470:e815::8 (spidey.rellim.com) 1.857 3.370 10.093 34.598 124.821 166.761 217.386 114.728 163.391 35.367 46.512 µs 1.762 5.874

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.1

peer jitter 204.17.205.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.1 4.387 9.030 19.002 75.299 180.322 217.869 249.480 161.320 208.839 51.723 86.846 µs 0.499 2.461

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.30

peer jitter 204.17.205.30 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.30 7.226 8.137 12.645 75.989 160.935 202.141 226.123 148.290 194.004 45.737 78.590 µs 0.5465 2.806

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2405:fc00::1 (robusta.dcs1.biz)

peer jitter 2405:fc00::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2405:fc00::1 (robusta.dcs1.biz) 0.048 0.177 0.264 2.007 58.190 109.304 169.558 57.926 109.126 22.238 14.551 ms 2.724 13.94

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com)

peer jitter 2604:a880:1:20::17:5001 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.107 0.148 0.185 0.547 3.070 6.222 9.024 2.885 6.073 1.254 0.956 ms 3.583 17.63

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::1 (time.cloudflare.com)

peer jitter 2606:4700:f1::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::1 (time.cloudflare.com) 0.079 0.117 0.178 0.431 1.456 2.039 4.690 1.278 1.922 0.468 0.574 ms 3.948 30.36

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::123 (time.cloudflare.com)

peer jitter 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 0.130 0.130 0.192 0.380 0.874 2.077 2.077 0.682 1.946 0.289 0.453 ms 2.946 15.69

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter SHM(0)

peer jitter SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter SHM(0) 0.167 0.309 0.430 1.040 2.579 3.981 28.871 2.149 3.672 0.964 1.243 ms 8.622 172

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Summary


Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 12.526 12.544 12.575 12.857 13.640 14.052 14.057 1.065 1.508 0.329 12.903 ppm 1.787 6.299
Local Clock Time Offset -248.766 -145.783 -76.884 -0.815 77.616 150.431 194.863 154.500 296.214 50.364 -1.281 µs -0.3246 7.306
Local RMS Frequency Jitter 5.729 7.323 10.523 18.915 57.458 82.948 89.572 46.935 75.625 14.610 23.402 ppb 2.313 8.591
Local RMS Time Jitter 15.287 17.945 21.027 34.051 49.875 64.380 73.073 28.848 46.435 9.095 34.538 µs 0.7307 4.27
Server Jitter 2001:470:e815::24 (pi4.rellim.com) 3.232 5.361 14.377 72.399 141.475 168.231 181.079 127.098 162.870 37.712 74.399 µs 0.2845 2.571
Server Jitter 2001:470:e815::8 (spidey.rellim.com) 1.857 3.370 10.093 34.598 124.821 166.761 217.386 114.728 163.391 35.367 46.512 µs 1.762 5.874
Server Jitter 204.17.205.1 4.387 9.030 19.002 75.299 180.322 217.869 249.480 161.320 208.839 51.723 86.846 µs 0.499 2.461
Server Jitter 204.17.205.30 7.226 8.137 12.645 75.989 160.935 202.141 226.123 148.290 194.004 45.737 78.590 µs 0.5465 2.806
Server Jitter 2405:fc00::1 (robusta.dcs1.biz) 0.048 0.177 0.264 2.007 58.190 109.304 169.558 57.926 109.126 22.238 14.551 ms 2.724 13.94
Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.107 0.148 0.185 0.547 3.070 6.222 9.024 2.885 6.073 1.254 0.956 ms 3.583 17.63
Server Jitter 2606:4700:f1::1 (time.cloudflare.com) 0.079 0.117 0.178 0.431 1.456 2.039 4.690 1.278 1.922 0.468 0.574 ms 3.948 30.36
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 0.130 0.130 0.192 0.380 0.874 2.077 2.077 0.682 1.946 0.289 0.453 ms 2.946 15.69
Server Jitter SHM(0) 0.167 0.309 0.430 1.040 2.579 3.981 28.871 2.149 3.672 0.964 1.243 ms 8.622 172
Server Offset 2001:470:e815::24 (pi4.rellim.com) -305.891 -174.826 -104.737 3.404 86.120 229.814 295.270 190.857 404.640 64.895 -0.797 µs 0.07091 7.284
Server Offset 2001:470:e815::8 (spidey.rellim.com) -250.631 -98.643 -40.743 31.444 113.389 178.322 210.436 154.132 276.965 50.753 32.872 µs -0.2545 6.501
Server Offset 204.17.205.1 -1.490 -1.443 -0.458 0.662 0.915 1.005 1.083 1.373 2.448 0.494 0.454 ms -1.86 6.874
Server Offset 204.17.205.30 -214.054 -193.880 -102.557 -14.215 55.677 96.087 110.039 158.234 289.967 48.440 -16.040 µs -0.5349 4.895
Server Offset 2405:fc00::1 (robusta.dcs1.biz) -152.180 -141.195 -105.932 -36.394 2.426 2.709 2.757 108.358 143.904 38.190 -30.147 ms -1.053 3.362
Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.588 0.754 0.916 1.254 1.658 1.923 1.972 0.742 1.169 0.224 1.264 ms 0.1675 3.714
Server Offset 2606:4700:f1::1 (time.cloudflare.com) 2.089 2.143 2.225 2.467 2.712 2.836 2.923 0.487 0.693 0.140 2.470 ms 0.1585 3.472
Server Offset 2606:4700:f1::123 (time.cloudflare.com) 2.148 2.148 2.283 2.476 2.676 2.758 2.758 0.393 0.610 0.120 2.471 ms 0.09679 2.892
Server Offset SHM(0) -162.943 -140.746 -138.107 -133.115 -129.053 -127.663 -125.828 9.054 13.083 2.790 -133.213 ms -0.7315 6.407
TDOP 0.610 0.700 0.780 1.100 1.690 2.370 3.610 0.910 1.670 0.331 1.161 1.769 8.476
Temp /dev/nvme0n1 64.000 65.000 68.000 73.000 74.000 74.000 75.000 6.000 9.000 1.809 71.993 °C
Temp /dev/nvme1n1 50.000 51.000 51.000 53.000 55.000 58.000 59.000 4.000 7.000 1.185 52.788 °C
Temp /dev/sda 49.000 49.000 50.000 51.000 52.000 53.000 53.000 2.000 4.000 0.762 51.219 °C
Temp /dev/sdb 38.000 38.000 39.000 40.000 42.000 42.000 42.000 3.000 4.000 0.930 39.674 °C
Temp LM0 49.000 49.000 50.000 55.000 58.000 59.000 59.000 8.000 10.000 2.631 54.490 °C
Temp LM1 41.750 41.750 41.875 43.250 68.375 70.500 72.375 26.500 28.750 6.614 45.276 °C
Temp LM10 25.000 25.000 25.000 25.000 25.000 25.000 25.000 0.000 0.000 0.000 25.000 °C
Temp LM11 63.000 63.000 63.000 64.000 64.000 65.000 65.000 1.000 2.000 0.526 63.649 °C
Temp LM12 4.000 5.000 8.000 24.000 29.000 36.000 38.000 21.000 31.000 5.165 23.333 °C
Temp LM13 25.000 25.000 25.000 25.000 25.000 25.000 25.000 0.000 0.000 0.000 25.000 °C
Temp LM14 46.000 46.000 46.000 48.000 48.000 48.000 48.000 2.000 2.000 0.680 47.444 °C
Temp LM15 37.000 37.000 37.000 38.000 57.000 59.000 61.000 20.000 22.000 4.889 39.698 °C
Temp LM16 67.500 68.000 68.000 68.500 69.000 69.500 69.500 1.000 1.500 0.410 68.479 °C
Temp LM17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM2 41.500 41.750 42.000 43.500 63.750 70.500 73.000 21.750 28.750 6.202 45.510 °C
Temp LM20 41.000 41.750 41.875 43.250 68.000 70.500 72.375 26.125 28.750 6.607 45.273 °C
Temp LM21 67.750 68.000 68.000 68.750 69.250 69.500 69.500 1.250 1.500 0.387 68.639 °C
Temp LM22 39.000 39.000 39.000 40.000 42.000 42.000 42.000 3.000 3.000 0.895 39.840 °C
Temp LM23 63.850 65.850 67.850 72.850 73.850 73.850 74.850 6.000 8.000 1.805 71.843 °C
Temp LM3 49.000 49.000 50.000 51.000 52.000 53.000 53.000 2.000 4.000 0.784 51.219 °C
Temp LM4 49.850 50.850 50.850 52.850 54.850 57.850 58.850 4.000 7.000 1.177 52.607 °C
Temp LM5 49.850 50.850 50.850 52.850 54.850 57.850 58.850 4.000 7.000 1.187 52.642 °C
Temp LM6 57.850 57.850 58.850 59.850 66.850 74.850 75.850 8.000 17.000 2.564 60.864 °C
Temp LM7 49.850 50.850 51.850 52.850 54.850 57.850 58.850 3.000 7.000 1.181 52.642 °C
Temp LM8 46.000 46.000 46.000 48.000 48.000 48.000 48.000 2.000 2.000 0.675 47.448 °C
Temp LM9 37.500 37.500 37.500 38.500 45.500 49.000 49.000 8.000 11.500 2.539 39.280 °C
nSats 5.000 5.000 5.000 5.000 5.000 5.000 5.000 0.000 0.000 0.000 5.000 nSat nan nan
Summary as CSV file


This server:

Motherboard:
OS: Gentoo unstable
GPS/PPS server: gpsd
NTP server: NTPsec
../ntp.conf

Notes:

Feb 21 03:28:57 UTC 2019: New install

Glossary:

frequency offset:
The difference between the ntpd calculated frequency and the local system clock frequency (usually in parts per million, ppm)
jitter, dispersion:
The short term change in a value. NTP measures Local Time Jitter, Refclock Jitter, and Server Jitter in seconds. Local Frequency Jitter is in ppm or ppb.
ms, millisecond:
One thousandth of a second = 0.001 seconds, 1e-3 seconds
mu, mean:
The arithmetic mean: the sum of all the values divided by the number of values. The formula for mu is: "mu = (∑xi) / N". Where xi denotes the data points and N is the number of data points.
ns, nanosecond:
One billionth of a second, also one thousandth of a microsecond, 0.000000001 seconds and 1e-9 seconds.
percentile:
The value below which a given percentage of values fall.
ppb, parts per billion:
Ratio between two values. These following are all the same: 1 ppb, one in one billion, 1/1,000,000,000, 0.000,000,001, 1e-9 and 0.000,000,1%
ppm, parts per million:
Ratio between two values. These following are all the same: 1 ppm, one in one million, 1/1,000,000, 0.000,001, and 0.000,1%
‰, parts per thousand:
Ratio between two values. These following are all the same: 1 ‰. one in one thousand, 1/1,000, 0.001, and 0.1%
refclock:
Reference clock, a local GPS module or other local source of time.
remote clock:
Any clock reached over the network, LAN or WAN. Also called a peer or server.
time offset:
The difference between the ntpd calculated time and the local system clock's time. Also called phase offset.
σ, sigma:
Sigma denotes the standard deviation (SD) and is centered on the arithmetic mean of the data set. The SD is simply the square root of the variance of the data set. Two sigma is simply twice the standard deviation. Three sigma is three times sigma. Smaller is better.
The formula for sigma is: "σ = √[ ∑(xi-mu)^2 / N ]". Where xi denotes the data points and N is the number of data points.
Skewness, Skew:
The skewness of a random variable X is the third standardized moment and is a dimension-less ratio. ntpviz uses the FIsher-Pearson moment of skewness. There are other different ways to calculate Skewness Wikipedia describes Skewness best: "The qualitative interpretation of the skew is complicated and unintuitive."
A normal distribution has a skewness of zero.
Kurtosis, Kurt:
The kurtosis of a random variable X is the fourth standardized moment and is a dimension-less ratio. ntpviz uses standard Kurtosis. There are other different ways to calculate Kurtosis.
A normal distribution has a Kurtosis of three. NIST describes a kurtosis over three as "heavy tailed" and one under three as "light tailed".
upstream clock:
Any server or reference clock used as a source of time.
µs, us, microsecond:
One millionth of a second, also one thousandth of a millisecond, 0.000,001 seconds, and 1e-6 seconds.



This page autogenerated by ntpviz, part of the NTPsec project
html 5    Valid CSS!