NTPsec

Kong

Report generated: Mon Jun 30 19:49:00 2025 UTC
Start Time: Sun Jun 29 19:49:00 2025 UTC
End Time: Mon Jun 30 19:49:00 2025 UTC
Report Period: 1.0 days
Warning: plots clipped

Daily stats   Weekly stats   Live GNSS Data   24 Hour Scatter Plots: ( )

Local Clock Time/Frequency Offsets

local offset plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Time Offset -256.753 -62.734 -42.808 0.315 72.267 119.127 161.911 115.075 181.861 35.816 2.023 µs -0.06033 12.91
Local Clock Frequency Offset 12.270 12.417 12.459 12.589 12.738 12.935 12.979 0.279 0.518 0.098 12.585 ppm 0.7695 4.704

The time and frequency offsets between the ntpd calculated time and the local system clock. Showing frequency offset (red, in parts per million, scale on right) and the time offset (blue, in μs, scale on left). Quick changes in time offset will lead to larger frequency offsets.

These are fields 3 (time) and 4 (frequency) from the loopstats log file.



Local RMS Time Jitter

local jitter plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Time Jitter 10.433 11.791 13.035 22.808 40.045 114.814 157.067 27.010 103.023 15.494 25.601 µs 4.744 31.59

The RMS Jitter of the local clock offset. In other words, how fast the local clock offset is changing.

Lower is better. An ideal system would be a horizontal line at 0μs.

RMS jitter is field 5 in the loopstats log file.



Local RMS Frequency Jitter

local stability plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Frequency Jitter 4.281 5.083 5.901 12.215 31.056 45.386 55.418 25.155 40.303 8.029 14.317 ppb 1.842 7.102

The RMS Frequency Jitter (aka wander) of the local clock's frequency. In other words, how fast the local clock changes frequency.

Lower is better. An ideal clock would be a horizontal line at 0ppm.

RMS Frequency Jitter is field 6 in the loopstats log file.



Local Clock Time Offset Histogram

local offset histogram plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Offset -256.753 -62.734 -42.808 0.315 72.267 119.127 161.911 115.075 181.861 35.816 2.023 µs -0.06033 12.91

The clock offsets of the local clock as a histogram.

The Local Clock Offset is field 3 from the loopstats log file.



Local Temperatures

local temps plot

Local temperatures. These will be site-specific depending upon what temperature sensors you collect data from. Temperature changes affect the local clock crystal frequency and stability. The math of how temperature changes frequency is complex, and also depends on crystal aging. So there is no easy way to correct for it in software. This is the single most important component of frequency drift.

The Local Temperatures are from field 3 from the tempstats log file.



Local Frequency/Temp

local freq temps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 12.270 12.417 12.459 12.589 12.738 12.935 12.979 0.279 0.518 0.098 12.585 ppm 0.7695 4.704
Temp /dev/nvme0n1 65.000 66.000 69.000 72.000 73.000 73.000 74.000 4.000 7.000 1.421 71.688 °C
Temp /dev/nvme1n1 51.000 51.000 52.000 53.000 53.000 55.000 59.000 1.000 4.000 0.757 52.677 °C
Temp /dev/sda 50.000 50.000 50.000 51.000 52.000 52.000 52.000 2.000 2.000 0.542 50.830 °C
Temp /dev/sdb 38.000 38.000 38.000 39.000 40.000 41.000 41.000 2.000 3.000 0.659 38.920 °C
Temp LM0 49.000 49.000 50.000 54.000 58.000 58.000 59.000 8.000 9.000 2.408 53.705 °C
Temp LM1 42.500 42.875 43.750 44.500 49.125 54.375 66.625 5.375 11.500 2.348 44.944 °C
Temp LM10 25.000 25.000 25.000 25.000 25.000 25.000 26.000 0.000 0.000 0.059 25.003 °C
Temp LM11 63.000 63.000 64.000 64.000 65.000 65.000 65.000 1.000 2.000 0.390 64.135 °C
Temp LM12 7.000 15.000 16.000 19.000 22.000 25.000 31.000 6.000 10.000 2.206 19.125 °C
Temp LM13 25.000 25.000 25.000 25.000 25.000 25.000 26.000 0.000 0.000 0.083 25.007 °C
Temp LM14 46.000 46.000 46.000 47.000 47.000 48.000 48.000 1.000 2.000 0.354 46.917 °C
Temp LM15 37.000 37.000 38.000 39.000 41.000 43.000 51.000 3.000 6.000 1.195 39.163 °C
Temp LM16 68.500 68.500 69.000 69.500 69.500 70.000 70.000 0.500 1.500 0.277 69.304 °C
Temp LM17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM2 42.250 43.000 44.000 45.000 49.000 55.750 75.000 5.000 12.750 2.626 45.483 °C
Temp LM20 42.500 42.875 43.750 44.500 49.250 54.375 62.625 5.500 11.500 2.153 44.908 °C
Temp LM21 68.750 68.750 69.000 69.500 69.750 70.000 70.000 0.750 1.250 0.262 69.460 °C
Temp LM22 38.000 38.000 38.000 39.000 40.000 41.000 41.000 2.000 3.000 0.680 39.049 °C
Temp LM23 64.850 65.850 68.850 71.850 72.850 72.850 73.850 4.000 7.000 1.432 71.510 °C
Temp LM3 49.000 50.000 50.000 51.000 52.000 52.000 52.000 2.000 2.000 0.560 50.799 °C
Temp LM4 50.850 50.850 51.850 52.850 52.850 54.850 58.850 1.000 4.000 0.756 52.531 °C
Temp LM5 50.850 50.850 51.850 52.850 52.850 54.850 58.850 1.000 4.000 0.751 52.534 °C
Temp LM6 58.850 58.850 59.850 60.850 62.850 67.850 76.850 3.000 9.000 1.472 61.162 °C
Temp LM7 50.850 50.850 51.850 52.850 52.850 54.850 58.850 1.000 4.000 0.741 52.551 °C
Temp LM8 46.000 46.000 46.000 47.000 47.000 48.000 48.000 1.000 2.000 0.354 46.917 °C
Temp LM9 38.000 38.000 38.500 39.000 41.500 43.000 43.500 3.000 5.000 0.825 39.363 °C

The frequency offsets and temperatures. Showing frequency offset (red, in parts per million, scale on right) and the temperatures.

These are field 4 (frequency) from the loopstats log file, and field 3 from the tempstats log file.



Local GPS

local gps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
nSats 8.000 10.000 11.000 13.000 16.000 18.000 19.000 5.000 8.000 1.663 13.523 nSat 0.4544 3.245
TDOP 0.620 0.740 0.800 1.130 1.810 2.600 4.310 1.010 1.860 0.366 1.211 2.059 11.09

Local GPS. The Time Dilution of Precision (TDOP) is plotted in blue. The number of visible satellites (nSat) is plotted in red.

TDOP is field 3, and nSats is field 4, from the gpsd log file. The gpsd log file is created by the ntploggps program.

TDOP is a dimensionless error factor. Smaller numbers are better. TDOP ranges from 1 (ideal), 2 to 5 (good), to greater than 20 (poor). Some GNSS receivers report TDOP less than one which is theoretically impossible.



Server Offsets

peer offsets plot

The offset of all refclocks and servers. This can be useful to see if offset changes are happening in a single clock or all clocks together.

Clock Offset is field 5 in the peerstats log file.



Server Offset 2001:470:e815::24 (pi4.rellim.com)

peer offset 2001:470:e815::24 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:470:e815::24 (pi4.rellim.com) -79.626 -65.075 -43.608 16.602 99.768 163.190 219.005 143.376 228.265 39.677 18.478 µs 1.24 6.96

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2001:470:e815::8 (spidey.rellim.com)

peer offset 2001:470:e815::8 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:470:e815::8 (spidey.rellim.com) -288.838 -275.345 -225.093 -23.786 68.853 85.625 96.589 293.946 360.970 96.733 -55.798 µs -0.5557 2.121

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.1

peer offset 204.17.205.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.1 -712.232 -618.134 -509.263 -27.361 153.263 269.823 322.013 662.526 887.957 199.634 -88.708 µs -0.7309 3.031

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.30

peer offset 204.17.205.30 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.30 -105.808 -99.040 -59.922 -17.776 48.720 113.099 150.876 108.642 212.139 33.374 -14.569 µs 1.131 7.128

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2405:fc00::1 (robusta.dcs1.biz)

peer offset 2405:fc00::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2405:fc00::1 (robusta.dcs1.biz) 3.393 3.866 4.462 5.289 7.870 8.085 8.325 3.408 4.219 1.098 5.737 ms 0.6436 2.184

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com)

peer offset 2604:a880:1:20::17:5001 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.517 0.763 0.861 1.103 1.469 1.737 1.863 0.608 0.974 0.187 1.128 ms 0.6799 4.653

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::1 (time.cloudflare.com)

peer offset 2606:4700:f1::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::1 (time.cloudflare.com) 2.053 2.053 2.248 2.517 2.836 3.012 3.012 0.589 0.959 0.191 2.514 ms 0.3631 3.186

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::123 (time.cloudflare.com)

peer offset 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::123 (time.cloudflare.com) 2.175 2.214 2.366 2.532 2.786 2.881 3.566 0.420 0.667 0.150 2.552 ms 1.758 13.17

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset SHM(0)

peer offset SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset SHM(0) -156.033 -141.023 -139.585 -133.475 -129.224 -128.016 -125.731 10.361 13.007 3.234 -133.809 ms -0.4691 3.203

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Jitters

peer jitters plot

The RMS Jitter of all refclocks and servers. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:470:e815::24 (pi4.rellim.com)

peer jitter 2001:470:e815::24 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:470:e815::24 (pi4.rellim.com) 0.000 2.672 4.218 13.213 62.350 114.595 139.233 58.132 111.923 20.474 20.607 µs 2.563 11.13

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:470:e815::8 (spidey.rellim.com)

peer jitter 2001:470:e815::8 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:470:e815::8 (spidey.rellim.com) 0.000 2.765 4.131 17.217 73.658 95.396 110.128 69.527 92.631 22.725 25.749 µs 1.252 4.008

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.1

peer jitter 204.17.205.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.1 0.000 3.079 5.082 13.830 40.602 120.572 189.585 35.520 117.493 18.914 18.259 µs 5.115 37.88

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.30

peer jitter 204.17.205.30 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.30 0.000 2.325 6.511 21.810 91.376 114.957 147.196 84.865 112.632 24.392 28.883 µs 2.019 7.603

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2405:fc00::1 (robusta.dcs1.biz)

peer jitter 2405:fc00::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2405:fc00::1 (robusta.dcs1.biz) 0.000 0.276 0.623 1.616 2.985 23.275 23.356 2.362 22.999 2.605 2.001 ms 7.164 57

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com)

peer jitter 2604:a880:1:20::17:5001 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.000 0.132 0.193 0.525 2.330 4.168 47.206 2.137 4.036 2.912 0.891 ms 14.94 236.9

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::1 (time.cloudflare.com)

peer jitter 2606:4700:f1::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::1 (time.cloudflare.com) 0.000 0.000 0.196 0.502 1.325 6.573 6.573 1.129 6.573 0.739 0.664 ms 6.323 50.05

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::123 (time.cloudflare.com)

peer jitter 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 0.074 0.116 0.221 0.453 0.840 1.358 1.566 0.619 1.242 0.207 0.478 ms 1.567 8.13

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter SHM(0)

peer jitter SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter SHM(0) 0.000 0.280 0.410 0.996 2.529 3.675 19.439 2.119 3.395 0.883 1.190 ms 6.457 97.25

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Summary


Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 12.270 12.417 12.459 12.589 12.738 12.935 12.979 0.279 0.518 0.098 12.585 ppm 0.7695 4.704
Local Clock Time Offset -256.753 -62.734 -42.808 0.315 72.267 119.127 161.911 115.075 181.861 35.816 2.023 µs -0.06033 12.91
Local RMS Frequency Jitter 4.281 5.083 5.901 12.215 31.056 45.386 55.418 25.155 40.303 8.029 14.317 ppb 1.842 7.102
Local RMS Time Jitter 10.433 11.791 13.035 22.808 40.045 114.814 157.067 27.010 103.023 15.494 25.601 µs 4.744 31.59
Server Jitter 2001:470:e815::24 (pi4.rellim.com) 0.000 2.672 4.218 13.213 62.350 114.595 139.233 58.132 111.923 20.474 20.607 µs 2.563 11.13
Server Jitter 2001:470:e815::8 (spidey.rellim.com) 0.000 2.765 4.131 17.217 73.658 95.396 110.128 69.527 92.631 22.725 25.749 µs 1.252 4.008
Server Jitter 204.17.205.1 0.000 3.079 5.082 13.830 40.602 120.572 189.585 35.520 117.493 18.914 18.259 µs 5.115 37.88
Server Jitter 204.17.205.30 0.000 2.325 6.511 21.810 91.376 114.957 147.196 84.865 112.632 24.392 28.883 µs 2.019 7.603
Server Jitter 2405:fc00::1 (robusta.dcs1.biz) 0.000 0.276 0.623 1.616 2.985 23.275 23.356 2.362 22.999 2.605 2.001 ms 7.164 57
Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.000 0.132 0.193 0.525 2.330 4.168 47.206 2.137 4.036 2.912 0.891 ms 14.94 236.9
Server Jitter 2606:4700:f1::1 (time.cloudflare.com) 0.000 0.000 0.196 0.502 1.325 6.573 6.573 1.129 6.573 0.739 0.664 ms 6.323 50.05
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 0.074 0.116 0.221 0.453 0.840 1.358 1.566 0.619 1.242 0.207 0.478 ms 1.567 8.13
Server Jitter SHM(0) 0.000 0.280 0.410 0.996 2.529 3.675 19.439 2.119 3.395 0.883 1.190 ms 6.457 97.25
Server Offset 2001:470:e815::24 (pi4.rellim.com) -79.626 -65.075 -43.608 16.602 99.768 163.190 219.005 143.376 228.265 39.677 18.478 µs 1.24 6.96
Server Offset 2001:470:e815::8 (spidey.rellim.com) -288.838 -275.345 -225.093 -23.786 68.853 85.625 96.589 293.946 360.970 96.733 -55.798 µs -0.5557 2.121
Server Offset 204.17.205.1 -712.232 -618.134 -509.263 -27.361 153.263 269.823 322.013 662.526 887.957 199.634 -88.708 µs -0.7309 3.031
Server Offset 204.17.205.30 -105.808 -99.040 -59.922 -17.776 48.720 113.099 150.876 108.642 212.139 33.374 -14.569 µs 1.131 7.128
Server Offset 2405:fc00::1 (robusta.dcs1.biz) 3.393 3.866 4.462 5.289 7.870 8.085 8.325 3.408 4.219 1.098 5.737 ms 0.6436 2.184
Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.517 0.763 0.861 1.103 1.469 1.737 1.863 0.608 0.974 0.187 1.128 ms 0.6799 4.653
Server Offset 2606:4700:f1::1 (time.cloudflare.com) 2.053 2.053 2.248 2.517 2.836 3.012 3.012 0.589 0.959 0.191 2.514 ms 0.3631 3.186
Server Offset 2606:4700:f1::123 (time.cloudflare.com) 2.175 2.214 2.366 2.532 2.786 2.881 3.566 0.420 0.667 0.150 2.552 ms 1.758 13.17
Server Offset SHM(0) -156.033 -141.023 -139.585 -133.475 -129.224 -128.016 -125.731 10.361 13.007 3.234 -133.809 ms -0.4691 3.203
TDOP 0.620 0.740 0.800 1.130 1.810 2.600 4.310 1.010 1.860 0.366 1.211 2.059 11.09
Temp /dev/nvme0n1 65.000 66.000 69.000 72.000 73.000 73.000 74.000 4.000 7.000 1.421 71.688 °C
Temp /dev/nvme1n1 51.000 51.000 52.000 53.000 53.000 55.000 59.000 1.000 4.000 0.757 52.677 °C
Temp /dev/sda 50.000 50.000 50.000 51.000 52.000 52.000 52.000 2.000 2.000 0.542 50.830 °C
Temp /dev/sdb 38.000 38.000 38.000 39.000 40.000 41.000 41.000 2.000 3.000 0.659 38.920 °C
Temp LM0 49.000 49.000 50.000 54.000 58.000 58.000 59.000 8.000 9.000 2.408 53.705 °C
Temp LM1 42.500 42.875 43.750 44.500 49.125 54.375 66.625 5.375 11.500 2.348 44.944 °C
Temp LM10 25.000 25.000 25.000 25.000 25.000 25.000 26.000 0.000 0.000 0.059 25.003 °C
Temp LM11 63.000 63.000 64.000 64.000 65.000 65.000 65.000 1.000 2.000 0.390 64.135 °C
Temp LM12 7.000 15.000 16.000 19.000 22.000 25.000 31.000 6.000 10.000 2.206 19.125 °C
Temp LM13 25.000 25.000 25.000 25.000 25.000 25.000 26.000 0.000 0.000 0.083 25.007 °C
Temp LM14 46.000 46.000 46.000 47.000 47.000 48.000 48.000 1.000 2.000 0.354 46.917 °C
Temp LM15 37.000 37.000 38.000 39.000 41.000 43.000 51.000 3.000 6.000 1.195 39.163 °C
Temp LM16 68.500 68.500 69.000 69.500 69.500 70.000 70.000 0.500 1.500 0.277 69.304 °C
Temp LM17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM2 42.250 43.000 44.000 45.000 49.000 55.750 75.000 5.000 12.750 2.626 45.483 °C
Temp LM20 42.500 42.875 43.750 44.500 49.250 54.375 62.625 5.500 11.500 2.153 44.908 °C
Temp LM21 68.750 68.750 69.000 69.500 69.750 70.000 70.000 0.750 1.250 0.262 69.460 °C
Temp LM22 38.000 38.000 38.000 39.000 40.000 41.000 41.000 2.000 3.000 0.680 39.049 °C
Temp LM23 64.850 65.850 68.850 71.850 72.850 72.850 73.850 4.000 7.000 1.432 71.510 °C
Temp LM3 49.000 50.000 50.000 51.000 52.000 52.000 52.000 2.000 2.000 0.560 50.799 °C
Temp LM4 50.850 50.850 51.850 52.850 52.850 54.850 58.850 1.000 4.000 0.756 52.531 °C
Temp LM5 50.850 50.850 51.850 52.850 52.850 54.850 58.850 1.000 4.000 0.751 52.534 °C
Temp LM6 58.850 58.850 59.850 60.850 62.850 67.850 76.850 3.000 9.000 1.472 61.162 °C
Temp LM7 50.850 50.850 51.850 52.850 52.850 54.850 58.850 1.000 4.000 0.741 52.551 °C
Temp LM8 46.000 46.000 46.000 47.000 47.000 48.000 48.000 1.000 2.000 0.354 46.917 °C
Temp LM9 38.000 38.000 38.500 39.000 41.500 43.000 43.500 3.000 5.000 0.825 39.363 °C
nSats 8.000 10.000 11.000 13.000 16.000 18.000 19.000 5.000 8.000 1.663 13.523 nSat 0.4544 3.245
Summary as CSV file


This server:

Motherboard:
OS: Gentoo unstable
GPS/PPS server: gpsd
NTP server: NTPsec
../ntp.conf

Notes:

Feb 21 03:28:57 UTC 2019: New install

Glossary:

frequency offset:
The difference between the ntpd calculated frequency and the local system clock frequency (usually in parts per million, ppm)
jitter, dispersion:
The short term change in a value. NTP measures Local Time Jitter, Refclock Jitter, and Server Jitter in seconds. Local Frequency Jitter is in ppm or ppb.
ms, millisecond:
One thousandth of a second = 0.001 seconds, 1e-3 seconds
mu, mean:
The arithmetic mean: the sum of all the values divided by the number of values. The formula for mu is: "mu = (∑xi) / N". Where xi denotes the data points and N is the number of data points.
ns, nanosecond:
One billionth of a second, also one thousandth of a microsecond, 0.000000001 seconds and 1e-9 seconds.
percentile:
The value below which a given percentage of values fall.
ppb, parts per billion:
Ratio between two values. These following are all the same: 1 ppb, one in one billion, 1/1,000,000,000, 0.000,000,001, 1e-9 and 0.000,000,1%
ppm, parts per million:
Ratio between two values. These following are all the same: 1 ppm, one in one million, 1/1,000,000, 0.000,001, and 0.000,1%
‰, parts per thousand:
Ratio between two values. These following are all the same: 1 ‰. one in one thousand, 1/1,000, 0.001, and 0.1%
refclock:
Reference clock, a local GPS module or other local source of time.
remote clock:
Any clock reached over the network, LAN or WAN. Also called a peer or server.
time offset:
The difference between the ntpd calculated time and the local system clock's time. Also called phase offset.
σ, sigma:
Sigma denotes the standard deviation (SD) and is centered on the arithmetic mean of the data set. The SD is simply the square root of the variance of the data set. Two sigma is simply twice the standard deviation. Three sigma is three times sigma. Smaller is better.
The formula for sigma is: "σ = √[ ∑(xi-mu)^2 / N ]". Where xi denotes the data points and N is the number of data points.
Skewness, Skew:
The skewness of a random variable X is the third standardized moment and is a dimension-less ratio. ntpviz uses the FIsher-Pearson moment of skewness. There are other different ways to calculate Skewness Wikipedia describes Skewness best: "The qualitative interpretation of the skew is complicated and unintuitive."
A normal distribution has a skewness of zero.
Kurtosis, Kurt:
The kurtosis of a random variable X is the fourth standardized moment and is a dimension-less ratio. ntpviz uses standard Kurtosis. There are other different ways to calculate Kurtosis.
A normal distribution has a Kurtosis of three. NIST describes a kurtosis over three as "heavy tailed" and one under three as "light tailed".
upstream clock:
Any server or reference clock used as a source of time.
µs, us, microsecond:
One millionth of a second, also one thousandth of a millisecond, 0.000,001 seconds, and 1e-6 seconds.



This page autogenerated by ntpviz, part of the NTPsec project
html 5    Valid CSS!