NTPsec

Kong

Report generated: Sun Jul 20 18:49:01 2025 UTC
Start Time: Sat Jul 19 18:49:00 2025 UTC
End Time: Sun Jul 20 18:49:00 2025 UTC
Report Period: 1.0 days
Warning: plots clipped

Daily stats   Weekly stats   Live GNSS Data   24 Hour Scatter Plots: ( )

Local Clock Time/Frequency Offsets

local offset plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Time Offset -75.180 -67.024 -34.139 -0.005 33.774 59.023 76.376 67.913 126.047 21.271 -0.408 µs -0.1539 4.998
Local Clock Frequency Offset 13.018 13.030 13.055 13.132 13.190 13.206 13.209 0.135 0.176 0.045 13.127 ppm -0.266 2.045

The time and frequency offsets between the ntpd calculated time and the local system clock. Showing frequency offset (red, in parts per million, scale on right) and the time offset (blue, in μs, scale on left). Quick changes in time offset will lead to larger frequency offsets.

These are fields 3 (time) and 4 (frequency) from the loopstats log file.



Local RMS Time Jitter

local jitter plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Time Jitter 6.879 8.110 10.427 20.848 40.277 47.482 53.455 29.850 39.372 9.112 22.461 µs 0.7634 3.209

The RMS Jitter of the local clock offset. In other words, how fast the local clock offset is changing.

Lower is better. An ideal system would be a horizontal line at 0μs.

RMS jitter is field 5 in the loopstats log file.



Local RMS Frequency Jitter

local stability plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Frequency Jitter 2.915 3.594 4.834 10.445 20.697 26.766 32.725 15.863 23.172 5.032 11.388 ppb 0.9927 4.133

The RMS Frequency Jitter (aka wander) of the local clock's frequency. In other words, how fast the local clock changes frequency.

Lower is better. An ideal clock would be a horizontal line at 0ppm.

RMS Frequency Jitter is field 6 in the loopstats log file.



Local Clock Time Offset Histogram

local offset histogram plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Offset -75.180 -67.024 -34.139 -0.005 33.774 59.023 76.376 67.913 126.047 21.271 -0.408 µs -0.1539 4.998

The clock offsets of the local clock as a histogram.

The Local Clock Offset is field 3 from the loopstats log file.



Local Temperatures

local temps plot

Local temperatures. These will be site-specific depending upon what temperature sensors you collect data from. Temperature changes affect the local clock crystal frequency and stability. The math of how temperature changes frequency is complex, and also depends on crystal aging. So there is no easy way to correct for it in software. This is the single most important component of frequency drift.

The Local Temperatures are from field 3 from the tempstats log file.



Local Frequency/Temp

local freq temps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 13.018 13.030 13.055 13.132 13.190 13.206 13.209 0.135 0.176 0.045 13.127 ppm -0.266 2.045
Temp /dev/nvme0n1 69.000 70.000 70.000 73.000 74.000 75.000 75.000 4.000 5.000 1.356 72.826 °C
Temp /dev/nvme1n1 52.000 53.000 53.000 54.000 55.000 56.000 58.000 2.000 3.000 0.729 53.771 °C
Temp /dev/sda 50.000 51.000 51.000 52.000 53.000 54.000 54.000 2.000 3.000 0.797 52.288 °C
Temp /dev/sdb 40.000 40.000 40.000 41.000 42.000 42.000 42.000 2.000 2.000 0.747 41.087 °C
Temp LM0 49.000 49.000 50.000 54.000 58.000 58.000 59.000 8.000 9.000 2.591 54.146 °C
Temp LM1 43.750 43.875 44.125 45.625 51.500 55.625 56.125 7.375 11.750 2.248 46.194 °C
Temp LM10 25.000 25.000 25.000 25.000 25.000 25.000 25.000 0.000 0.000 0.000 25.000 °C
Temp LM11 64.000 64.000 64.000 65.000 65.000 65.000 66.000 1.000 1.000 0.417 64.788 °C
Temp LM12 4.000 6.000 17.000 23.000 27.000 30.000 31.000 10.000 24.000 3.377 22.750 °C
Temp LM13 25.000 25.000 25.000 25.000 25.000 25.000 25.000 0.000 0.000 0.000 25.000 °C
Temp LM14 48.000 48.000 48.000 49.000 49.000 49.000 49.000 1.000 1.000 0.487 48.615 °C
Temp LM15 38.000 39.000 39.000 40.000 42.000 43.000 46.000 3.000 4.000 0.958 40.267 °C
Temp LM16 69.000 69.000 69.000 69.500 70.000 70.000 70.000 1.000 1.000 0.253 69.411 °C
Temp LM17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM2 43.750 43.750 44.000 45.500 49.000 55.500 67.500 5.000 11.750 2.283 45.964 °C
Temp LM20 43.750 43.875 44.125 45.500 51.500 55.500 56.125 7.375 11.625 2.216 46.178 °C
Temp LM21 69.000 69.000 69.250 69.750 70.000 70.000 70.000 0.750 1.000 0.237 69.595 °C
Temp LM22 40.000 40.000 40.000 41.000 42.000 42.000 42.000 2.000 2.000 0.679 41.087 °C
Temp LM23 68.850 68.850 69.850 72.850 73.850 73.850 74.850 4.000 5.000 1.380 72.690 °C
Temp LM3 50.000 51.000 51.000 52.000 53.000 54.000 54.000 2.000 3.000 0.829 52.278 °C
Temp LM4 51.850 52.850 52.850 53.850 54.850 55.850 57.850 2.000 3.000 0.740 53.642 °C
Temp LM5 51.850 52.850 52.850 53.850 54.850 55.850 56.850 2.000 3.000 0.694 53.621 °C
Temp LM6 59.850 59.850 60.850 61.850 62.850 67.850 72.850 2.000 8.000 1.171 61.506 °C
Temp LM7 51.850 52.850 52.850 53.850 54.850 55.850 56.850 2.000 3.000 0.694 53.621 °C
Temp LM8 48.000 48.000 48.000 49.000 49.000 49.000 49.000 1.000 1.000 0.488 48.608 °C
Temp LM9 39.500 39.500 39.500 40.500 41.500 41.500 42.000 2.000 2.000 0.573 40.410 °C

The frequency offsets and temperatures. Showing frequency offset (red, in parts per million, scale on right) and the temperatures.

These are field 4 (frequency) from the loopstats log file, and field 3 from the tempstats log file.



Local GPS

local gps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
nSats 5.000 5.000 5.000 5.000 5.000 5.000 5.000 0.000 0.000 0.000 5.000 nSat nan nan
TDOP 0.540 0.680 0.740 1.030 1.620 2.030 5.010 0.880 1.350 0.291 1.082 2.139 16.23

Local GPS. The Time Dilution of Precision (TDOP) is plotted in blue. The number of visible satellites (nSat) is plotted in red.

TDOP is field 3, and nSats is field 4, from the gpsd log file. The gpsd log file is created by the ntploggps program.

TDOP is a dimensionless error factor. Smaller numbers are better. TDOP ranges from 1 (ideal), 2 to 5 (good), to greater than 20 (poor). Some GNSS receivers report TDOP less than one which is theoretically impossible.



Server Offsets

peer offsets plot

The offset of all refclocks and servers. This can be useful to see if offset changes are happening in a single clock or all clocks together.

Clock Offset is field 5 in the peerstats log file.



Server Offset 2001:470:e815::24 (pi4.rellim.com)

peer offset 2001:470:e815::24 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:470:e815::24 (pi4.rellim.com) -140.525 -119.122 -57.064 6.652 47.796 70.974 96.531 104.860 190.096 31.647 3.416 µs -1.46 7.612

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2001:470:e815::8 (spidey.rellim.com)

peer offset 2001:470:e815::8 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:470:e815::8 (spidey.rellim.com) -65.910 -34.854 -17.590 16.896 62.072 81.673 100.909 79.662 116.527 23.914 18.363 µs 0.2962 3.398

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.1

peer offset 204.17.205.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.1 -125.935 -84.660 4.945 460.473 811.410 834.969 877.945 806.465 919.629 244.366 464.531 µs -0.4433 2.491

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.17.205.30

peer offset 204.17.205.30 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.17.205.30 -95.448 -81.580 -44.496 -12.116 24.566 57.026 64.299 69.062 138.606 21.960 -12.012 µs 0.1123 5.764

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2405:fc00::1 (robusta.dcs1.biz)

peer offset 2405:fc00::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2405:fc00::1 (robusta.dcs1.biz) 1.178 1.389 1.529 1.885 2.405 2.493 2.669 0.876 1.104 0.270 1.913 ms 0.2705 2.574

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com)

peer offset 2604:a880:1:20::17:5001 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.726 0.951 1.134 1.396 1.698 1.974 2.120 0.564 1.022 0.185 1.403 ms 0.3703 4.536

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::1 (time.cloudflare.com)

peer offset 2606:4700:f1::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::1 (time.cloudflare.com) 2.316 2.352 2.420 2.609 2.841 2.979 2.997 0.421 0.628 0.133 2.618 ms 0.4132 2.975

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2606:4700:f1::123 (time.cloudflare.com)

peer offset 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2606:4700:f1::123 (time.cloudflare.com) 1.917 1.987 2.335 2.665 2.918 3.077 3.145 0.583 1.090 0.199 2.651 ms -0.8339 4.74

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset SHM(0)

peer offset SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset SHM(0) -151.797 -142.363 -140.039 -134.321 -130.663 -129.483 -127.573 9.376 12.881 2.905 -134.685 ms -0.8401 4.572

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Jitters

peer jitters plot

The RMS Jitter of all refclocks and servers. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:470:e815::24 (pi4.rellim.com)

peer jitter 2001:470:e815::24 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:470:e815::24 (pi4.rellim.com) 10.134 19.508 27.412 54.896 122.913 152.148 195.297 95.501 132.640 31.785 65.477 µs 0.7892 3.057

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:470:e815::8 (spidey.rellim.com)

peer jitter 2001:470:e815::8 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:470:e815::8 (spidey.rellim.com) 4.093 7.240 17.007 43.661 117.998 133.433 164.575 100.991 126.193 29.639 51.433 µs 1.275 4.195

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.1

peer jitter 204.17.205.1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.1 6.394 17.926 25.168 46.388 132.242 171.929 233.245 107.074 154.003 39.309 64.156 µs 1.005 3.113

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.17.205.30

peer jitter 204.17.205.30 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.17.205.30 8.937 20.013 27.661 66.052 145.123 177.804 196.545 117.462 157.791 37.931 74.468 µs 0.701 2.663

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2405:fc00::1 (robusta.dcs1.biz)

peer jitter 2405:fc00::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2405:fc00::1 (robusta.dcs1.biz) 0.137 0.220 0.275 0.684 3.011 11.233 12.670 2.736 11.013 1.416 1.061 ms 5.26 37.29

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com)

peer jitter 2604:a880:1:20::17:5001 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.123 0.157 0.227 0.615 2.074 2.717 4.256 1.847 2.560 0.567 0.777 ms 2.131 9.386

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::1 (time.cloudflare.com)

peer jitter 2606:4700:f1::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::1 (time.cloudflare.com) 0.111 0.173 0.214 0.448 1.689 2.464 4.729 1.476 2.291 0.582 0.604 ms 3.933 22.93

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2606:4700:f1::123 (time.cloudflare.com)

peer jitter 2606:4700:f1::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 0.107 0.130 0.253 0.531 1.308 5.549 5.610 1.055 5.418 0.845 0.742 ms 4.79 27.06

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter SHM(0)

peer jitter SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter SHM(0) 0.125 0.305 0.443 1.054 2.593 5.290 17.976 2.150 4.985 1.133 1.277 ms 6.636 66.9

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Summary


Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 13.018 13.030 13.055 13.132 13.190 13.206 13.209 0.135 0.176 0.045 13.127 ppm -0.266 2.045
Local Clock Time Offset -75.180 -67.024 -34.139 -0.005 33.774 59.023 76.376 67.913 126.047 21.271 -0.408 µs -0.1539 4.998
Local RMS Frequency Jitter 2.915 3.594 4.834 10.445 20.697 26.766 32.725 15.863 23.172 5.032 11.388 ppb 0.9927 4.133
Local RMS Time Jitter 6.879 8.110 10.427 20.848 40.277 47.482 53.455 29.850 39.372 9.112 22.461 µs 0.7634 3.209
Server Jitter 2001:470:e815::24 (pi4.rellim.com) 10.134 19.508 27.412 54.896 122.913 152.148 195.297 95.501 132.640 31.785 65.477 µs 0.7892 3.057
Server Jitter 2001:470:e815::8 (spidey.rellim.com) 4.093 7.240 17.007 43.661 117.998 133.433 164.575 100.991 126.193 29.639 51.433 µs 1.275 4.195
Server Jitter 204.17.205.1 6.394 17.926 25.168 46.388 132.242 171.929 233.245 107.074 154.003 39.309 64.156 µs 1.005 3.113
Server Jitter 204.17.205.30 8.937 20.013 27.661 66.052 145.123 177.804 196.545 117.462 157.791 37.931 74.468 µs 0.701 2.663
Server Jitter 2405:fc00::1 (robusta.dcs1.biz) 0.137 0.220 0.275 0.684 3.011 11.233 12.670 2.736 11.013 1.416 1.061 ms 5.26 37.29
Server Jitter 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.123 0.157 0.227 0.615 2.074 2.717 4.256 1.847 2.560 0.567 0.777 ms 2.131 9.386
Server Jitter 2606:4700:f1::1 (time.cloudflare.com) 0.111 0.173 0.214 0.448 1.689 2.464 4.729 1.476 2.291 0.582 0.604 ms 3.933 22.93
Server Jitter 2606:4700:f1::123 (time.cloudflare.com) 0.107 0.130 0.253 0.531 1.308 5.549 5.610 1.055 5.418 0.845 0.742 ms 4.79 27.06
Server Jitter SHM(0) 0.125 0.305 0.443 1.054 2.593 5.290 17.976 2.150 4.985 1.133 1.277 ms 6.636 66.9
Server Offset 2001:470:e815::24 (pi4.rellim.com) -140.525 -119.122 -57.064 6.652 47.796 70.974 96.531 104.860 190.096 31.647 3.416 µs -1.46 7.612
Server Offset 2001:470:e815::8 (spidey.rellim.com) -65.910 -34.854 -17.590 16.896 62.072 81.673 100.909 79.662 116.527 23.914 18.363 µs 0.2962 3.398
Server Offset 204.17.205.1 -125.935 -84.660 4.945 460.473 811.410 834.969 877.945 806.465 919.629 244.366 464.531 µs -0.4433 2.491
Server Offset 204.17.205.30 -95.448 -81.580 -44.496 -12.116 24.566 57.026 64.299 69.062 138.606 21.960 -12.012 µs 0.1123 5.764
Server Offset 2405:fc00::1 (robusta.dcs1.biz) 1.178 1.389 1.529 1.885 2.405 2.493 2.669 0.876 1.104 0.270 1.913 ms 0.2705 2.574
Server Offset 2604:a880:1:20::17:5001 (ntp1.glypnod.com) 0.726 0.951 1.134 1.396 1.698 1.974 2.120 0.564 1.022 0.185 1.403 ms 0.3703 4.536
Server Offset 2606:4700:f1::1 (time.cloudflare.com) 2.316 2.352 2.420 2.609 2.841 2.979 2.997 0.421 0.628 0.133 2.618 ms 0.4132 2.975
Server Offset 2606:4700:f1::123 (time.cloudflare.com) 1.917 1.987 2.335 2.665 2.918 3.077 3.145 0.583 1.090 0.199 2.651 ms -0.8339 4.74
Server Offset SHM(0) -151.797 -142.363 -140.039 -134.321 -130.663 -129.483 -127.573 9.376 12.881 2.905 -134.685 ms -0.8401 4.572
TDOP 0.540 0.680 0.740 1.030 1.620 2.030 5.010 0.880 1.350 0.291 1.082 2.139 16.23
Temp /dev/nvme0n1 69.000 70.000 70.000 73.000 74.000 75.000 75.000 4.000 5.000 1.356 72.826 °C
Temp /dev/nvme1n1 52.000 53.000 53.000 54.000 55.000 56.000 58.000 2.000 3.000 0.729 53.771 °C
Temp /dev/sda 50.000 51.000 51.000 52.000 53.000 54.000 54.000 2.000 3.000 0.797 52.288 °C
Temp /dev/sdb 40.000 40.000 40.000 41.000 42.000 42.000 42.000 2.000 2.000 0.747 41.087 °C
Temp LM0 49.000 49.000 50.000 54.000 58.000 58.000 59.000 8.000 9.000 2.591 54.146 °C
Temp LM1 43.750 43.875 44.125 45.625 51.500 55.625 56.125 7.375 11.750 2.248 46.194 °C
Temp LM10 25.000 25.000 25.000 25.000 25.000 25.000 25.000 0.000 0.000 0.000 25.000 °C
Temp LM11 64.000 64.000 64.000 65.000 65.000 65.000 66.000 1.000 1.000 0.417 64.788 °C
Temp LM12 4.000 6.000 17.000 23.000 27.000 30.000 31.000 10.000 24.000 3.377 22.750 °C
Temp LM13 25.000 25.000 25.000 25.000 25.000 25.000 25.000 0.000 0.000 0.000 25.000 °C
Temp LM14 48.000 48.000 48.000 49.000 49.000 49.000 49.000 1.000 1.000 0.487 48.615 °C
Temp LM15 38.000 39.000 39.000 40.000 42.000 43.000 46.000 3.000 4.000 0.958 40.267 °C
Temp LM16 69.000 69.000 69.000 69.500 70.000 70.000 70.000 1.000 1.000 0.253 69.411 °C
Temp LM17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 °C
Temp LM2 43.750 43.750 44.000 45.500 49.000 55.500 67.500 5.000 11.750 2.283 45.964 °C
Temp LM20 43.750 43.875 44.125 45.500 51.500 55.500 56.125 7.375 11.625 2.216 46.178 °C
Temp LM21 69.000 69.000 69.250 69.750 70.000 70.000 70.000 0.750 1.000 0.237 69.595 °C
Temp LM22 40.000 40.000 40.000 41.000 42.000 42.000 42.000 2.000 2.000 0.679 41.087 °C
Temp LM23 68.850 68.850 69.850 72.850 73.850 73.850 74.850 4.000 5.000 1.380 72.690 °C
Temp LM3 50.000 51.000 51.000 52.000 53.000 54.000 54.000 2.000 3.000 0.829 52.278 °C
Temp LM4 51.850 52.850 52.850 53.850 54.850 55.850 57.850 2.000 3.000 0.740 53.642 °C
Temp LM5 51.850 52.850 52.850 53.850 54.850 55.850 56.850 2.000 3.000 0.694 53.621 °C
Temp LM6 59.850 59.850 60.850 61.850 62.850 67.850 72.850 2.000 8.000 1.171 61.506 °C
Temp LM7 51.850 52.850 52.850 53.850 54.850 55.850 56.850 2.000 3.000 0.694 53.621 °C
Temp LM8 48.000 48.000 48.000 49.000 49.000 49.000 49.000 1.000 1.000 0.488 48.608 °C
Temp LM9 39.500 39.500 39.500 40.500 41.500 41.500 42.000 2.000 2.000 0.573 40.410 °C
nSats 5.000 5.000 5.000 5.000 5.000 5.000 5.000 0.000 0.000 0.000 5.000 nSat nan nan
Summary as CSV file


This server:

Motherboard:
OS: Gentoo unstable
GPS/PPS server: gpsd
NTP server: NTPsec
../ntp.conf

Notes:

Feb 21 03:28:57 UTC 2019: New install

Glossary:

frequency offset:
The difference between the ntpd calculated frequency and the local system clock frequency (usually in parts per million, ppm)
jitter, dispersion:
The short term change in a value. NTP measures Local Time Jitter, Refclock Jitter, and Server Jitter in seconds. Local Frequency Jitter is in ppm or ppb.
ms, millisecond:
One thousandth of a second = 0.001 seconds, 1e-3 seconds
mu, mean:
The arithmetic mean: the sum of all the values divided by the number of values. The formula for mu is: "mu = (∑xi) / N". Where xi denotes the data points and N is the number of data points.
ns, nanosecond:
One billionth of a second, also one thousandth of a microsecond, 0.000000001 seconds and 1e-9 seconds.
percentile:
The value below which a given percentage of values fall.
ppb, parts per billion:
Ratio between two values. These following are all the same: 1 ppb, one in one billion, 1/1,000,000,000, 0.000,000,001, 1e-9 and 0.000,000,1%
ppm, parts per million:
Ratio between two values. These following are all the same: 1 ppm, one in one million, 1/1,000,000, 0.000,001, and 0.000,1%
‰, parts per thousand:
Ratio between two values. These following are all the same: 1 ‰. one in one thousand, 1/1,000, 0.001, and 0.1%
refclock:
Reference clock, a local GPS module or other local source of time.
remote clock:
Any clock reached over the network, LAN or WAN. Also called a peer or server.
time offset:
The difference between the ntpd calculated time and the local system clock's time. Also called phase offset.
σ, sigma:
Sigma denotes the standard deviation (SD) and is centered on the arithmetic mean of the data set. The SD is simply the square root of the variance of the data set. Two sigma is simply twice the standard deviation. Three sigma is three times sigma. Smaller is better.
The formula for sigma is: "σ = √[ ∑(xi-mu)^2 / N ]". Where xi denotes the data points and N is the number of data points.
Skewness, Skew:
The skewness of a random variable X is the third standardized moment and is a dimension-less ratio. ntpviz uses the FIsher-Pearson moment of skewness. There are other different ways to calculate Skewness Wikipedia describes Skewness best: "The qualitative interpretation of the skew is complicated and unintuitive."
A normal distribution has a skewness of zero.
Kurtosis, Kurt:
The kurtosis of a random variable X is the fourth standardized moment and is a dimension-less ratio. ntpviz uses standard Kurtosis. There are other different ways to calculate Kurtosis.
A normal distribution has a Kurtosis of three. NIST describes a kurtosis over three as "heavy tailed" and one under three as "light tailed".
upstream clock:
Any server or reference clock used as a source of time.
µs, us, microsecond:
One millionth of a second, also one thousandth of a millisecond, 0.000,001 seconds, and 1e-6 seconds.



This page autogenerated by ntpviz, part of the NTPsec project
html 5    Valid CSS!